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Abstract

For a tree T on n vertices, we study the Maker-Breaker game, played on the edge set
of the complete graph on n vertices, which Maker wins as soon as the graph she builds
contains a copy of T . We prove that if T has bounded maximum degree, then Maker can
win this game within n+ 1 moves. Moreover, we prove that Maker can build almost every
tree on n vertices in n−1 moves and provide non-trivial examples of families of trees which
Maker cannot build in n− 1 moves.

1 Introduction

Let X be a finite set and let F ⊆ 2X be a family of subsets. In the Maker-Breaker game
(X,F), two players, called Maker and Breaker, take turns in claiming a previously unclaimed
element of X, with Breaker going first. The set X is called the board of the game and the
members of F are referred to as the winning sets. Maker wins this game as soon as she claims
all elements of some winning set. If Maker does not fully claim any winning set by the time
every board element is claimed by some player, then Breaker wins the game. We say that the
game (X,F) is Maker’s win if Maker has a strategy that ensures her win in this game (in some
number of moves) against any strategy of Breaker, otherwise the game is Breaker’s win. One
can also consider a biased version in which Maker claims p board elements per move (instead
of just 1) and Breaker claims q board elements per move. We refer to this version as a (p : q)
game. For a more detailed discussion, we refer the reader to [4].
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The following game was studied in [10]. Let T be a tree on n vertices. The board of the
tree embedding game (E(Kn), Tn) is the edge set of the complete graph on n vertices and the
minimal (with respect to inclusion) winning sets are the labeled copies of T in Kn. Several
variants of this game were studied by various researchers (see e.g. [2, 5, 16]).

It was proved in [10] that for any real numbers 0 < α < 0.005 and 0 < ε < 0.05 and a
sufficiently large integer n, Maker has a strategy to win the (1 : q) game (E(Kn), Tn) within
n + o(n) moves, for every q ≤ nα and every tree T with n vertices and maximum degree at
most nε. The bounds on the duration of the game, on Breaker’s bias and on the maximum
degree of the tree to be embedded, do not seem to be best possible. Indeed, it was noted in [10]
that it would be interesting to improve each of these bounds, even at the expense of the other
two. In this paper we focus on the duration of the game. We restrict our attention to the case
of bounded degree trees and to unbiased games (that is, the case q = 1).

The smallest number of moves Maker needs in order to win some Maker-Breaker game is an
important game invariant which has received a lot of attention in recent years (see e.g. [3, 7,
8, 9, 10, 11, 14, 15, 19]). Part of the interest in this invariant stems from its usefulness in the
study of strong games. In the strong game (X,F), two players, called Red and Blue, take turns
in claiming one previously unclaimed element of X, with Red going first. The winner of the
game is the first player to fully claim some F ∈ F . If neither player is able to fully claim some
F ∈ F by the time every element of X has been claimed by some player, the game ends in a
draw. Strong games are notoriously hard to analyze. For certain strong games, a combination
of a strategy stealing argument and a hypergraph coloring argument can be used to prove that
these games are won by Red. However, the aforementioned arguments are purely existential.
That is, even if it is known that Red has a winning strategy for some strong game (X,F), it
might be very hard to describe such a strategy explicitly. The use of explicit very fast winning
strategies for Maker in a weak game for devising an explicit winning strategy for Red in the
corresponding strong game was initiated in [8]. This idea was used to devise such strategies
for the strong perfect matching and Hamilton cycle games [8] and for the k-vertex-connectivity
game [9].

Returning to the tree embedding game (E(Kn), Tn), it is obvious that Maker cannot build any
tree on n vertices in less than n− 1 moves. This trivial lower bound can be attained for some
trees. For example, it was proved in [14] that Maker can build a Hamilton path of Kn in n− 1
moves. On the other hand it is not hard to see that there are trees on n vertices which Maker
cannot build in less than n moves. Indeed, consider for example the complete binary tree on n
vertices BTn. Suppose for a contradiction that Maker can build a copy of BTn in n− 1 moves.
It follows that after n− 2 moves, Maker’s graph is isomorphic to BTn \ e, where e is some edge
of BTn. Note that for any e ∈ E(BTn), there is a unique edge of Kn which Maker has to claim
in order to complete a copy of BTn. Hence, by claiming this edge, Breaker delays Maker’s win
by at least one move. Note that, in contrast, if e is an edge of a path Pn which is not incident
with any of its endpoints, then there are four edges of Kn whose addition to a copy of Pn \ e
yields a copy of Pn.

In this paper we prove the following general upper bound which is only one move away from
the aforementioned lower bound.

Theorem 1.1 Let ∆ be a positive integer. Then there exists an integer n0 = n0(∆) such that
for every n ≥ n0 and for every tree T = (V,E) with |V | = n and ∆(T ) ≤ ∆, Maker has a
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strategy to win the game (E(Kn), Tn) within n+ 1 moves.

Since every tree either does or does not admit a long bare path (a path of a tree T is called bare
if all of its interior vertices are of degree 2 in T ) we will deduce Theorem 1.1 as an immediate
corollary of the following two theorems (with m2 = m1 and n0 = max{n1, n2}).

Theorem 1.2 Let ∆ be a positive integer. Then there exists an integer m1 = m1(∆) and
an integer n1 = n1(∆,m1) such that the following holds for every n ≥ n1 and for every tree
T = (V,E) with |V | = n and ∆(T ) ≤ ∆. If T admits a bare path of length m1, then Maker
has a strategy to win the game (E(Kn), Tn) within n moves.

Theorem 1.3 Let ∆ and m2 be positive integers. Then there exists an integer n2 = n2(∆,m2)
such that the following holds for every n ≥ n2 and for every tree T = (V,E) such that |V | = n
and ∆(T ) ≤ ∆. If T does not admit a bare path of length m2, then Maker has a strategy to
win the game (E(Kn), Tn) within n+ 1 moves.

Recall that Maker cannot build a copy of the complete binary tree on n vertices in less than n
moves. One can adapt the argument used to prove this statement to obtain many examples of
trees which Maker cannot build in n− 1 moves. Nevertheless, the following theorem suggests
that such examples are quite rare.

Theorem 1.4 Let T be a tree, chosen uniformly at random from the class of all labeled trees
on n vertices. Then asymptotically almost surely, T is such that Maker has a strategy to win
the game (E(Kn), Tn) in n− 1 moves.

One of the main ingredients in our proof of Theorem 1.4 is the construction of a Hamilton
path with one designated endpoint in optimal time (see Lemma 4.5). Using this lemma it will
be easy to obtain the following generalization of Theorem 1.4 from [14].

Theorem 1.5 Let ∆ be a positive integer. Then there exists an integer m3 = m3(∆) and
an integer n3 = n3(∆,m3) such that the following holds for every n ≥ n3 and for every tree
T = (V,E) with |V | = n and ∆(T ) ≤ ∆. If T admits a bare path of length m3, such that one
of its endpoints is a leaf of T , then Maker has a strategy to win the game (E(Kn), Tn) in n− 1
moves.

The rest of this paper is organized as follows: in Subsection 1.1 we introduce some notation
and terminology that will be used throughout this paper. In Section 2 we prove Theorem 1.2,
in Section 3 we prove Theorem 1.3 and in Section 4 we prove Theorems 1.4 and 1.5. Finally,
in Section 5 we present some open problems.

1.1 Notation and terminology

Our graph-theoretic notation is standard and follows that of [20]. In particular, we use the
following.
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For a graph G, let V (G) and E(G) denote its sets of vertices and edges respectively, and let
v(G) = |V (G)| and e(G) = |E(G)|. For disjoint sets A,B ⊆ V (G), let EG(A,B) denote the set
of edges of G with one endpoint in A and one endpoint in B, and let eG(A,B) = |EG(A,B)|.
For a set S ⊆ V (G), let G[S] denote the subgraph of G which is induced on the set S. For
disjoint sets S, T ⊆ V (G), let NG(S, T ) = {u ∈ T : ∃v ∈ S, uv ∈ E(G)} denote the set of
neighbors of the vertices of S in T . For a set T ⊆ V (G) and a vertex w ∈ V (G) \ T we
abbreviate NG({w}, T ) to NG(w, T ), and let dG(w, T ) = |NG(w, T )| denote the degree of w
into T . For a set S ⊆ V (G) and a vertex w ∈ V (G) we abbreviate NG(S, V (G) \ S) to NG(S)
and NG(w, V (G) \ {w}) to NG(w). We let dG(w) = |NG(w)| denote the degree of w in G. The
minimum and maximum degrees of a graph G are denoted by δ(G) and ∆(G) respectively.
Often, when there is no risk of confusion, we omit the subscript G from the notation above.
Let P = (v1v2 . . . vk) be a path in a graph G. The vertices v1 and vk are called the endpoints
of P , whereas the vertices of V (P ) \ {v1, vk} are called the interior vertices of P . We denote
the set of endpoints of a path P by End(P ). Note that |End(P )| = min{2, v(P )}. The length
of a path is the number of its edges. A path of a tree T is called a bare path if all of its interior
vertices are of degree 2 in T . Given two graphs G and H on the same set of vertices V , let
G \H denote the graph with vertex set V and edge set E(G) \ E(H).

Let G be a graph, let T be a tree, and let S ⊆ V (T ) be an arbitrary set. An S-partial
embedding of T in G is an injective mapping f : S → V (G), such that f(x)f(y) ∈ E(G)
whenever x, y ∈ S and xy ∈ E(T ). For a vertex v ∈ f(S) let v′ = f−1(v) denote its pre-image
under f . If S = V (T ), we call an S-partial embedding of T in G simply an embedding of
T in G. We say that the vertices of S are embedded, whereas the vertices of V (T ) \ S are
called new. An embedded vertex is called closed with respect to T and f if all its neighbors
in T are embedded as well. An embedded vertex, that is not closed with respect to T and
f , is called open with respect to T and f . The vertices of f(S) are called taken, whereas the
vertices of V (G) \ f(S) are called available. With some abuse of this terminology, for a closed
(respectively open) vertex u′ ∈ S, we sometimes refer to f(u′) as being closed (respectively
open) as well. Moreover, we omit the phrase “with respect to T and f” or abbreviate it to
“with respect to T”, if its meaning is clear from the context. In particular we denote the set
of open vertices with respect to T and f by OT .

Assume that some Maker-Breaker game, played on the edge set of some graph G, is in progress.
At any given moment during this game, we denote the graph spanned by Maker’s edges by M
and the graph spanned by Breaker’s edges by B; the edges of G \ (M ∪B) are called free.

2 Trees which admit a long bare path

In this section we will prove Theorem 1.2. The main idea is to first embed the tree T except
for a sufficiently long bare path P and then to embed P between its previously embedded
endpoints. In the first stage we will waste no moves, whereas in the second we will waste at
most one. Starting with the former we prove the following result.

Theorem 2.1 Let r be a positive integer and let n,m and ∆ ≥ 3 be integers satisfying n >
m ≥ (∆ + r)2. For every 1 ≤ i ≤ r, let Ti = (Vi, Ei) be a tree with maximum degree at most
∆ and assume that

∑r
i=1 |Vi| = n−m. For every 1 ≤ i ≤ r let x′i ∈ Vi be an arbitrary vertex.
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Then, playing a Maker-Breaker game on the edge set of Kn, Maker has a strategy to ensure
that the following two properties will hold immediately after her (

∑r
i=1 |Vi| − r)th move:

(i) M ∼=
⋃r
i=1 Ti, that is, Maker’s graph is a vertex disjoint union of the Ti’s.

(ii) There exists an isomorphism f :
⋃r
i=1 Ti → M for which eB(A ∪ f({x′1, . . . , x′r})) ≤(

∆+r−1
2

)
, where A = V (Kn) \ f(

⋃r
i=1 Vi) is the set of available vertices.

Remark 2.2 In the proof of Theorem 1.2 we will use the special case r = 2 of Theorem 2.1.
Another special case, namely r = 1, will be used in the proof of Theorem 1.5. It is therefore
convenient to prove it here for every r. Moreover, it might have future applications where other
values of r are considered.

Proof of Theorem 2.1 We begin by describing Maker’s strategy. At any point during the
game, if Maker is unable to follow the proposed strategy, then she forfeits the game. We will
prove that Maker can follow this strategy without forfeiting the game and that, by doing so,
she wins the game.

Maker’s strategy: Throughout the game, Maker maintains a set S ⊆
⋃r
i=1 Vi of embedded

vertices, an S-partial embedding f of
⋃r
i=1 Ti in Kn \B and a set A = V (Kn) \ f(S) such that

eB(A ∪ f({x′1, . . . , x′r})) ≤
(

∆+r−1
2

)
. Initially S = {x′1, . . . , x′r}, f(x′i) = xi for every 1 ≤ i ≤ r

where x1, . . . , xr ∈ V (Kn) are r arbitrary vertices, and A = V (Kn)\{x1, . . . , xr}. At any point
during the game we denote the set A ∪ {x1, . . . , xr} by U .

Maker’s strategy is based on the following potential function: for every vertex u ∈ V (Kn) let
φ(u) = max{0, dB(u, U)− dM (u)} and let

ψ = eB(U) +
r∑
i=1

∑
w∈f(OTi

)

φ(w)

(by abuse of notation we use ψ to denote the potential at any point during the game).

For every 1 ≤ i ≤ r let di = dTi(x
′
i). In her first

∑r
i=1 di moves, Maker closes x′1, . . . , x

′
r, that

is, for every 1 ≤ i ≤ r and every 1 ≤ j ≤ di she claims a free edge xiyij where the elements
of {yij : 1 ≤ i ≤ r, 1 ≤ j ≤ di} are

∑r
i=1 di arbitrary vertices of A. She then updates A,U, S

and f as follows. For every 1 ≤ i ≤ r let y′i1, . . . , y
′
idi

be the neighbours of x′i in Ti. Maker
deletes the elements of {yij : 1 ≤ i ≤ r, 1 ≤ j ≤ di} from A (and then also from U), adds the
elements of {y′ij : 1 ≤ i ≤ r, 1 ≤ j ≤ di} to S and sets f(y′ij) = yij for every 1 ≤ i ≤ r and
every 1 ≤ j ≤ di.

For every integer ` >
∑r

i=1 di, Maker plays her `th move according to the value of ψ at that
time. She distinguishes between the following three cases.

Case 1: ψ ≤
(

∆+r−1
2

)
. Maker claims a free edge vz such that the following properties hold:

1. v ∈
⋃r
i=1 f(OTi);

2. z ∈ A.
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Subsequently, Maker updates A,U, S and f by deleting z from A (and then also from U),
adding z′ to S and setting f(z′) = z, where z′ is an arbitrary new neighbor of f−1(v) in⋃r
i=1 Ti.

Case 2: ψ > max
{(

∆+r−1
2

)
, eB(U)

}
. Maker claims a free edge vz such that the following

properties hold:

1. v ∈
⋃r
i=1 f(OTi);

2. dB(v, U) > dM (v);

3. z ∈ A.

Subsequently, Maker updates A,U, S and f as in Case 1.

Case 3: ψ = eB(U) >
(

∆+r−1
2

)
. Maker claims a free edge vz such that the following properties

hold:

1. v ∈
⋃r
i=1 f(OTi);

2. z ∈ A.

3. dB(z, U) > 0.

Subsequently, Maker updates A,U, S and f as in Case 1.

We wish to prove that Maker can follow the proposed strategy without forfeiting the game.
Note first that ψ ≥ eB(U) holds by definition and thus Maker will never face a situation which
is not covered by Cases 1,2 and 3 above. Next, we prove the following claims.

Claim 2.3 For every
∑r

i=1 di < ` ≤
∑r

i=1 |Vi|−r, Maker does not increase ψ in her `th move.

Proof For every
∑r

i=1 di < ` ≤
∑r

i=1 |Vi| − r, in her `th move Maker claims an edge vz such
that v ∈

⋃r
i=1 f(OTi) and z ∈ A. Clearly, this does not affect φ(u) for any u ∈ V (Kn) \ {v, z}.

Moreover, φ(v) is not increased, eB(U) is decreased by dB(z, U) and
∑r

i=1

∑
w∈f(OTi

) φ(w) is

increased by at most φ(z) ≤ dB(z, U). 2

Claim 2.4 ψ ≤
(

∆+r−1
2

)
holds immediately after Maker’s `th move for every

∑r
i=1 di ≤ ` ≤∑r

i=1 |Vi| − r.

Proof We prove this by induction on the number of Maker’s moves. Since (
⋃r
i=1 f(OTi)) ∩

{x1, . . . , xr} = ∅ holds after Maker’s (
∑r

i=1 di)th move, it follows that, from this point onwards,
every edge e ∈ E(B) contributes at most 1 to ψ. Since ∆ ≥ 3 it thus follows that ψ ≤

∑r
i=1 di ≤

r∆ ≤
(

∆+r−1
2

)
holds immediately after Maker’s (

∑r
i=1 di)th move. Assume that ψ ≤

(
∆+r−1

2

)
holds immediately after her `th move for some

∑r
i=1 di ≤ ` <

∑r
i=1 |Vi| − r; we will show

that, unless Maker forfeits the game, this inequality holds immediately after her (`+1)st move
as well. Since, x′1, . . . , x

′
r are closed, from now on Breaker can increase ψ by at most 1 per

move. It thus follows by the induction hypothesis that ψ ≤
(

∆+r−1
2

)
+ 1 holds immediately

before Maker’s (`+ 1)st move. Assume first that in fact ψ ≤
(

∆+r−1
2

)
. It follows by Claim 2.3

that ψ ≤
(

∆+r−1
2

)
holds immediately after Maker’s (` + 1)st move as well. Assume then that

6



ψ =
(

∆+r−1
2

)
+1; it suffices to prove that Maker decreases ψ by at least 1 in her (`+1)st move.

Maker plays according to the proposed strategy, either for Case 2 or for Case 3. In Case 2 ψ is
not increased since the value of

∑r
i=1

∑
w∈f(OTi

) φ(w) is increased by at most dB(z, U) and the

value of eB(U) is decreased by the same amount. Moreover, since dB(v, U) > dM (v), it follows
that φ(v) is decreased by at least 1. Since v ∈

⋃r
i=1 f(OTi) holds before Maker’s (` + 1)st

move, we conclude that ψ is decreased by at least 1. In Case 3 Maker decreases eB(U) by
dB(z, U). Moreover, if z becomes closed, then

∑r
i=1

∑
w∈f(OTi

) φ(w) is not increased, whereas,

if z becomes open, then since dB(z, U) > 0, it is increased by dB(z, U)−dM (z) = dB(z, U)−1.
Either way, ψ is decreased by at least 1. 2

We can now prove that Maker is indeed able to play according to the proposed strategy.

Claim 2.5 Maker can follow the proposed strategy without forfeiting the game for
∑r

i=1 |Vi|−r
moves.

Proof Since Maker aims to build a copy of
⋃r
i=1 Ti within

∑r
i=1 |Vi| − r moves and since∑r

i=1 |Vi| = n −m ≤ n − (∆ + r)2, it follows that |A| ≥ (∆ + r)2 holds at any point during
these

∑r
i=1 |Vi|−r moves; in particular Maker can follow the first

∑r
i=1 di moves of the proposed

strategy. As previously noted, once x′1, . . . , x
′
r are closed, Breaker can increase ψ by at most

1 per move. It thus follows by Claim 2.4 that ψ ≤
(

∆+r−1
2

)
+ 1 holds at any point during

the remainder of the game. Assume first that ψ ≤
(

∆+r−1
2

)
. Let v ∈

⋃r
i=1 f(OTi), then

φ(v) ≤ ψ ≤
(

∆+r−1
2

)
and thus dB(v, U) ≤ φ(v) + dM (v) ≤

(
∆+r−1

2

)
+ ∆ < (∆ + r)2 ≤ |A|.

Hence there exists a free edge vz such that z ∈ A. We conclude that Maker can follow her
strategy for Case 1.

Assume then that ψ =
(

∆+r−1
2

)
+ 1. Assume further that ψ > eB(U). It follows that there

exists a vertex v ∈
⋃r
i=1 f(OTi) such that φ(v) > 0 and thus dB(v, U) > dM (v). The same

calculation as above shows that dB(v, U) < |A|. Therefore, Maker can claim a free edge vz as
required by her strategy for Case 2.

Assume then that eB(U) = ψ =
(

∆+r−1
2

)
+ 1. It follows that there are at least ∆ + r vertices

z ∈ U for which dB(z, U) > 0; by the definition of A and U , at least ∆ of them must be in A. Let
v ∈

⋃r
i=1 f(OTi). Since ψ = eB(U), it follows that φ(v) = 0 and thus dB(v, U) ≤ dM (v) < ∆

(the last inequality holds since v is open). Therefore, Maker can claim a free edge vz as required
by her strategy for Case 3. 2

Since Maker follows the proposed strategy, it is evident that after
∑r

i=1 |Vi| − r moves she
builds a graph which is isomorphic to

⋃r
i=1 Ti. Moreover, since φ(w) ≥ 0 for every vertex

w, it follows by Claim 2.4 that eB(U) ≤ ψ ≤
(

∆+r−1
2

)
holds, in particular, immediately after

Maker’s (
∑r

i=1 |Vi| − r)th move. We conclude that Maker can indeed ensure that Properties
(i) and (ii) will hold immediately after her (

∑r
i=1 |Vi| − r)th move. 2

Next, we wish to embed a Hamilton path whose endpoints were previously embedded, into an
almost complete graph. Formally, we need the following result.

Lemma 2.6 For every positive integer k there exists an integer m0 = m0(k) such that the
following holds for every m ≥ m0. Let G be a graph with m vertices and e(G) ≥

(
m
2

)
− k edges
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and let x and y be two arbitrary vertices of G. Then, playing a Maker-Breaker game on E(G),
Maker has a strategy to build a Hamilton path of G between x and y within m moves.

Lemma 2.6 can be proved similarly to Theorem 1.1 from [15]. We omit the straightforward
details.

We can now combine Theorem 2.1 and Lemma 2.6 to deduce Theorem 1.2.

Proof of Theorem 1.2 Let k =
(

∆+1
2

)
+ 1, let m0 = m0(k) be the constant whose existence

follows from Lemma 2.6 and let m1 = max{m0, (∆ + 2)2}. Let P be a bare path in T of length
m1 with endpoints x′1 and x′2. Let F be the forest which is obtained from T by deleting all the
vertices in V (P ) \ {x′1, x′2}. Let T1 be the connected component of F which contains x′1 and
let T2 be the connected component of F which contains x′2.

Maker’s strategy consists of two stages. In the first stage she embeds T1∪T2 using the strategy
whose existence follows from Theorem 2.1 (with r = 2) while ensuring that Properties (i) and
(ii) are satisfied. Let f : T1 ∪ T2 → M be an isomorphism, let x1 = f(x′1), let x2 = f(x′2), let
A = V (Kn) \ f(V (T1) ∪ V (T2)), let U = A ∪ {x1, x2} and let G = (Kn \B)[U ].

In the second stage she embeds P into G between the endpoints x1 and x2. She does so using
the strategy whose existence follows from Lemma 2.6 which is applicable by the choice of m1

and by Property (ii). Hence, T ⊆M holds at the end of the second stage, that is, Maker wins
the game.

It follows by Theorem 2.1 that the first stage lasts exactly v(T1) + v(T2) − 2 = n − |V (P )| =
n− |U | moves. It follows by Lemma 2.6 that the second stage lasts at most |U | moves. There-
fore, the entire game lasts at most n moves as claimed. 2

3 Trees which do not admit a long bare path

In this section we will prove Theorem 1.3. The main idea is to first embed the tree T except for
a large matching between some of its leaves and their parents and then to embed this matching
between the previously embedded endpoints and the remaining available vertices. In the first
stage we will waste no moves, whereas in the second we will waste at most two.

In order for this approach to be valid, we must first prove that such a matching exists in T .

Lemma 3.1 For all positive integers ∆ and m there exists an integer n0 = n0(∆,m) such
that the following holds for every n ≥ n0. Let T be a tree on n vertices with maximum degree
at most ∆ and let L denote the set of leaves of T . If T does not admit a bare path of length
m, then |L| ≥ |NT (L)| ≥ n

2∆(m+1) .

The inequality |L| ≥ |NT (L)| is trivial. Moreover, since the maximum degree of T is at most ∆,
it follows that |L| ≤ ∆ · |NT (L)|. Hence, Lemma 3.1 is an immediate corollary of the following
result (with k = m and ` = |L|).
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Lemma 3.2 (Lemma 2.1 in [17]) Let k, n and ` be positive integers. Let T be a tree on n

vertices with at most ` leaves. Then T contains a collection of at least n−(2`−2)(k+1)
k+1 vertex

disjoint bare paths of length k each.

Next, we prove that Maker can build a perfect matching very quickly when playing on the
edge set of a very dense subgraph of a sufficiently large complete bipartite graph.

Let G = (V,E) be a graph. The winning sets of the perfect matching game, played on the
board E, are the edge sets of all matchings of G of size b|V |/2c. The following theorem was
proved in [14].

Theorem 3.3 (Theorem 1.2 in [14]) There exists an integer n0 such that for every n ≥ n0,
Maker has a strategy to win the perfect matching game, played on E(Kn), within bn/2c+(n+1)
mod 2 moves.

The following analogous result, which applies to the perfect matching game, played on a
complete bipartite graph, holds as well.

Theorem 3.4 There exists an integer n0 such that for every n ≥ n0, Maker has a strategy to
win the perfect matching game, played on E(Kn,n), within n+ 1 moves.

One can prove Theorem 3.4 using essentially the same argument as in the proof of Theorem 3.3
given in [14]. We omit the straightforward details and refer the reader to [14].

The following lemma, which will be used in the proof of Theorem 1.3, asserts that Maker can
win the perfect matching game very quickly even when the board is a very dense subgraph of
a sufficiently large complete bipartite graph.

Lemma 3.5 For all non-negative integers k1 and k2 there exists an integer f(k1, k2) such that
the following holds for every n ≥ f(k1, k2). Let G = (U1 ∪ U2, E) be a bipartite graph which
satisfies the following properties:

(i) |U1| = |U2| = n;

(ii) d(u1, U2) ≥ n− k1 for every u1 ∈ U1;

(iii) d(u2, U1) ≥ n− k2 for every u2 ∈ U2.

Then Maker has a strategy to win the perfect matching game, played on E, within n+2 moves.

Remark 3.6 The bound on the number of moves given in Lemma 3.5 is best possible, even for
the case k1 = k2 = 1. Indeed, one can show that, when playing on Kn,n from which a perfect
matching was removed, Maker cannot build a perfect matching within n + 1 moves; we omit
the details.
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Proof of Lemma 3.5 The following notation and terminology will be used throughout this
proof. At any point during the game, let S denote the set of vertices of G which are isolated
in Maker’s graph, let S1 = S ∩ U1 and let S2 = S ∩ U2. Let Br = ((Kn,n \ G) ∪ B)[S]. For
i ∈ {1, 2} let ∆i = max{dBr(w) : w ∈ Si}.

We prove Lemma 3.5 by induction on k1+k2. In the induction step we will need to assume that
k1 +k2 ≥ 3. Hence, we first consider the case k1 +k2 ≤ 2. Note that if k1 = 0, then k2 = 0 and
vice versa. Since, moreover, the case k1 = k2 = 0 follows directly from Theorem 3.4, it suffices
to consider the case k1 = k2 = 1. In this case Kn,n\G is a matching. Let U1 = {x1, . . . , xn} and
U2 = {y1, . . . , yn} and assume without loss of generality that E(Kn,n\G) ⊆ {xiyi : 1 ≤ i ≤ n}.
Moreover, assume without loss of generality that the edge claimed by Breaker in his first move
is either x1y1 or x1y2. Let A1 = {x1, . . . , xdn/2e}, A2 = {ybn/2c+1, . . . , yn}, B1 = U1 \A1, B2 =
U2 \A2, H ′1 = (G\B)[A1∪A2] and H2 = (G\B)[B1∪B2]. Note that H2

∼= K|B1|,|B1| and that
there exists an edge e ∈ E(K|A1|,|A1|) such that H ′1 ⊇ K|A1|,|A1| \ {e}. Let H1 = K|A1|,|A1| \ {e}
(if H ′1 = K|A1|,|A1|, then choose e ∈ E(K|A1|,|A1|) arbitrarily). Let S1 (respectively S2) be
Maker’s strategy for the perfect matching game on K|A1|,|A1| (respectively K|B1|,|B1|) whose
existence follows from Theorem 3.4. Maker plays her first move in H1 according to S1. She
views the board to be E(K|A1|,|A1|) and assumes that Breaker claimed e in his first move. In
the remainder of the game, Maker plays on E(H1) and E(H2) in parallel. That is, whenever
Breaker claims an edge of Hi for some i ∈ {1, 2}, Maker claims a free edge of the same board
according to Si (unless she has already built a perfect matching on this board, in which case
she claims a free edge of the other board) and whenever Breaker claims an edge of G\(H1∪H2),
Maker plays in some Hi in which she has not yet built a perfect matching.

Since Maker plays according to S1 and S2, it follows by Theorem 3.4 that she builds a perfect
matching of H1 within |A1| + 1 moves and a perfect matching of H2 within |B1| + 1 moves.
The union of these two matchings forms a perfect matching of G which Maker builds within
n+ 2 moves.

Assume then that k1 +k2 ≥ 3 and that the assertion of the lemma holds for k1 +k2−1. Assume
without loss of generality that k2 ≥ k1; in particular, k2 ≥ 2. We present a strategy for Maker
and then prove that it allows her to build a perfect matching of G within n+ 2 moves. At any
point during the game, if Maker is unable to follow the proposed strategy, then she forfeits the
game. The strategy is divided into the following two stages.

Stage I: Maker builds a matching while making sure that neither ∆1 nor ∆2 are increased
and trying to decrease ∆1 + ∆2. This stage is divided into the following two phases.

Phase 1: At the beginning of the game and immediately after each of her moves in this phase,
if ∆1 < k1, then Maker proceeds to Stage II. Otherwise, if there exists a free edge uv such that

(a) u ∈ S1 and v ∈ S2;

(b) dBr(u) = ∆1;

(c) dBr(v) = max{dBr(w) : w ∈ NG(u, S2) for which uw is free};

(d) dBr(v) ≥ 2;

then Maker claims an arbitrary such edge and repeats Phase 1. If no such edge exists, then
Maker proceeds to Phase 2.

10



Phase 2: In her first move in this phase, Maker claims a free edge uv such that u ∈ S1,
dBr(u) = ∆1 and v ∈ S2. Let xy denote the edge claimed by Breaker in his following move,
where x ∈ U1 and y ∈ U2. In her next (and final) move in this phase, Maker plays as follows.

(a) If x /∈ S1 or y /∈ S2, then Maker claims a free edge ab such that a ∈ S1, b ∈ S2 and
dBr(b) = ∆2.

(b) Otherwise, if dBr(y) > k2, then Maker claims a free edge yz for an arbitrary vertex
z ∈ NG(y, S1).

(c) Otherwise, if there exists a vertex w ∈ S2 such that dBr(w) ≥ k2 and xw is free, then
Maker claims xw.

(d) Otherwise, Maker claims a free edge xz for an arbitrary vertex z ∈ NG(x, S2).

Maker then proceeds to Stage II.

Stage II: Maker builds a perfect matching of G[S] within |S1|+ 2 moves.

It is evident that, if Maker can follow the proposed strategy without forfeiting the game, then
she wins the perfect matching game, played on E(G), within n + 2 moves. It thus suffices to
prove that she can indeed do so.

We begin by proving the following simple claim.

Claim 3.7 If Maker follows the proposed strategy, then ∆1 ≤ k1 and ∆2 ≤ k2 hold immediately
after each of Maker’s moves in Phase 1 of Stage I.

Proof The claim clearly holds before the game starts. Assume it holds immediately after
Maker’s jth move for some non-negative integer j. Let xy denote the edge claimed by Breaker
in his (j+ 1)st move, where x ∈ U1 and y ∈ U2. Since Maker does not increase dBr(w) for any
w ∈ S in any of her moves, it follows that if x /∈ S1 or y /∈ S2, then there is nothing to prove.
Assume then that x ∈ S1 and y ∈ S2. It follows by our assumption that ∆1 ≤ k1 + 1 and
∆2 ≤ k2 +1 and that dBr(w) ≤ k1 holds for every w ∈ S1\{x} and dBr(w) ≤ k2 holds for every
w ∈ S2 \ {y}. Let uv denote the edge claimed by Maker in her (j + 1)st move, where u ∈ S1

and v ∈ S2. If u = x, then x is removed from S1 and, as a result, dBr(y) ≤ k2 holds after this
move. Assume then that u 6= x; it follows by Maker’s strategy that dBr(x) ≤ dBr(u) ≤ k1.
If dBr(y) ≤ k2, then there is nothing to prove. Assume then that dBr(y) = k2 + 1. If v = y,
then y is removed from S2. Assume then that v 6= y. Since y is the unique vertex of maximum
degree in S2, it follows by Maker’s strategy that uy ∈ E(Br). Hence, by claiming uv Maker
decreases dBr(y). We conclude that ∆1 ≤ k1 and ∆2 ≤ k2 hold immediately after Maker’s
(j + 1)st move. 2

We will first prove that Maker can follow Stage I of her strategy without forfeiting the game,
and, moreover, that this stage lasts at most k1n

k1+1 + 2 moves.

It is obvious that Maker can follow her strategy for Phase 1. We will prove that this phase lasts
at most k1n

k1+1 moves. For every non-negative integer i, immediately after Breaker’s (i + 1)st
move, let D(i) =

∑
v∈S1

dBr(v). Note that D(i) ≥ 0 holds for every i and that D(0) ≤ k1n+1.
For an arbitrary non-negative integer j, let uv be the edge claimed by Maker in her (j + 1)st
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move. Then D(j+1) ≤ D(j)−dBr(u)−dBr(v)+1 ≤ D(j)− (k1 +1), where the last inequality
follows by Properties (b) and (d) of the proposed strategy for Phase 1. It follows that there
can be at most k1n

k1+1 such moves throughout Stage I.

By its description, Phase 2 lasts exactly 2 moves. It follows that indeed Stage I lasts at most
k1n
k1+1 + 2 moves. Therefore, |S1| = |S2| ≥ n

k1+1 − 2 > 2 + max{k1, k2} ≥ max{∆1,∆2} holds
throughout Stage I, where the second inequality holds since n is sufficiently large with respect
to k1 and k2. Hence, for every u ∈ S there exists some v ∈ S such that uv ∈ E is free. In
particular, Maker can follow the proposed strategy for Phase 2.

It remains to prove that Maker can follow Stage II of the proposed strategy without forfeiting
the game. Consider the game immediately after Maker’s last move in Stage I (or before the
game starts in case Maker plays no moves in Stage I). As noted above, at this point we have
|S1| = |S2| ≥ n

k1+1 − 2 ≥ max{f(k1 − 1, k2), f(k1, k2 − 1)}, where the last inequality holds for
sufficiently large n.

We claim that ∆1 ≤ k1, ∆2 ≤ k2 and ∆1 + ∆2 ≤ k1 + k2 − 1 hold at this point as well. Note
that, by Claim 3.7, ∆1 ≤ k1 and ∆2 ≤ k2 hold after each of Maker’s moves in Phase 1 of
Stage I. If Maker enters Stage II directly from Phase 1 of Stage I, then ∆1 < k1 holds as well
and our claim follows. Assume then that Maker plays the two moves of Phase 2. It follows
by Claim 3.7 that immediately before Maker’s first move in this phase there is at most one
vertex z ∈ S1 such that dBr(z) > k1 and at most one vertex z′ ∈ S2 such that dBr(z

′) > k2.
In her first move in Phase 2, Maker claims an edge uv such that dBr(u) = ∆1. Since this is
done in Phase 2, it follows that uw ∈ E(Br) holds at this moment for every w ∈ S2 for which
dBr(w) ≥ 2. Clearly, ∆1 ≤ k1 holds after this move. Moreover, since k2 ≥ 2, by removing
u from S1, Maker decreases dBr(w) for every w ∈ S2 whose degree was at least k2. Hence,
∆2 ≤ k2 holds after this move and, moreover, there is at most one vertex z′′ ∈ S2 such that
dBr(z

′′) = k2. In his next move, Breaker claims an edge xy. It is not hard to see that each of
the four options for Maker’s next move (as described in the proposed strategy), ensures that
∆1 ≤ k1 and ∆2 < k2 will hold after this move.

We conclude that |S1| = |S2| ≥ max{f(k1 − 1, k2), f(k1, k2 − 1)}, ∆1 ≤ k1, ∆2 ≤ k2 and
∆1 + ∆2 ≤ k1 +k2− 1 hold immediately before Breaker’s first move in Stage II. It thus follows
by the induction hypothesis that Maker can indeed build a perfect matching of G[S] within
|S1|+ 2 moves. 2

We are now ready to prove the main result of this section.

Proof of Theorem 1.3 Let L denote the set of leaves of T and let ε = (2∆(m2 +1))−1. Since
∆(T ) ≤ ∆ and since T does not admit a bare path of length m2, it follows by Lemma 3.1 that
|L| ≥ |NT (L)| ≥ n

2∆(m2+1) = εn. Let L′ ⊆ L be a maximal set of leaves, no two of which have

a common parent in T (that is, |L′| = |NT (L)|) and let T ′ = T \ L′.

First we describe a strategy for Maker in (E(Kn), Tn) and then prove that it allows her to
build a copy of T within n + 1 moves. At any point during the game, if Maker is unable to
follow the proposed strategy, then she forfeits the game. The proposed strategy is divided into
the following two stages.

Stage I: In this stage, Maker’s aim is to embed a tree T ′′ such that T ′ ⊆ T ′′ ⊆ T and
|V (T ′′)| ≤ n− εn/2. Moreover, Maker does so in exactly |V (T ′′)| − 1 moves.
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Let k be the smallest integer such that ∆ + 3 ≤ ε∆k/40. Throughout this stage, Maker
maintains a set S ⊆ V (T ) of embedded vertices, an S-partial embedding f of T in Kn \ B, a
set A = V (Kn) \ f(S) of available vertices and a set D ⊆ V (Kn) of dangerous vertices, where
a vertex v ∈ V (Kn) is called dangerous if dB(v) ≥ ∆k+1 and v is either an available vertex or
an open vertex with respect to T . Initially, D = ∅, S = {v′} and f(v′) = v, where v′ ∈ V (T ′)
and v ∈ V (Kn) are arbitrary vertices.

For as long as V (T ′) \ S 6= ∅ or D 6= ∅, Maker plays as follows:

(1) If D 6= ∅, then let v ∈ D be an arbitrary vertex. We distinguish between the following two
cases:

(i) v is taken. Let v′1, . . . , v
′
r be the new neighbors of v′ := f−1(v) in T . In her next r

moves, Maker claims the edges of {vvi : 1 ≤ i ≤ r}, where v1, . . . , vr are r arbitrary
available vertices. Subsequently, Maker updates S, D and f by adding v′1, . . . , v

′
r to

S, deleting v from D and setting f(v′i) = vi for every 1 ≤ i ≤ r.
(ii) v is available. This case is further divided into the following three subcases:

(a) There exists a vertex u ∈ f(OT ) such that the edge uv is free. Maker claims
uv and updates S and f by adding v′ to S and setting f(v′) = v, where v′ ∈
NT (f−1(u)) is an arbitrary new vertex. If v′ is a leaf of T , then Maker deletes v
from D.

(b) There are two vertices u,w ∈ f(OT ) and new vertices u1, u2, w1, w2 ∈ V (T ) \ S
such that f−1(u)u1, u1u2, f

−1(w)w1, w1w2 ∈ E(T ). Let z be an available vertex
such that the edges zv, zu and zw are free. Maker claims the edge zv and after
Breaker’s next move she claims zu if it is free and zw otherwise. Assume that
Maker claims zu (the complementary case in which she claims zw is similar).
She then updates S and f by adding u1 and u2 to S and setting f(u1) = z and
f(u2) = v. If u2 is a leaf of T , then Maker deletes v from D.

(c) There exists a vertex u ∈ f(OT ) and new vertices x′, y′, z′ ∈ V (T ) \ S such
that f−1(u)x′, x′y′, y′z′ ∈ E(T ). Maker claims a free edge vw for some w ∈ A.
Immediately after Breaker’s next move, let x be an available vertex such that the
edges xu, xv and xw are free. Maker claims the edge xu and after Breaker’s next
move she claims xw if it is free and xv otherwise. Assume that Maker claims xw
(the complementary case in which she claims xv is similar). She then updates S
and f by adding x′, y′ and z′ to S and setting f(x′) = x, f(y′) = w and f(z′) = v.
If z′ is a leaf of T , then Maker deletes v from D.

(2) If D = ∅, then Maker claims an arbitrary edge uv, where u ∈ f(OT ′) and v ∈ A.
Subsequently, she updates S and f by adding v′ to S and setting f(v′) = v, where
v′ ∈ NT ′(f

−1(u)) is an arbitrary new vertex.

As soon as V (T ′) \ S = D = ∅, Stage I is over and Maker proceeds to Stage II.

Stage II: Let H be the bipartite graph with parts A and f(OT ) and edge set E(H) = {uv ∈
E(Kn) \ E(B) : u ∈ A, v ∈ f(OT )}. Maker builds a perfect matching of H within |A| + 2
moves, following the strategy whose existence is ensured by Lemma 3.5.

It is evident that if Maker can follow the proposed strategy without forfeiting the game, then
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she wins the game within n+ 1 moves. It thus suffices to prove that Maker can indeed do so.
We consider each of the two stages separately.

Stage I: We begin by proving the following three claims.

Claim 3.8 At most 2n
∆k+1 vertices become dangerous throughout Stage I.

Proof Stage I of the proposed strategy lasts |V (T ′′)| − 1 ≤ n moves. Since, moreover, a
dangerous vertex has degree at least ∆k+1 in Breaker’s graph, it follows that there can be at
most 2n

∆k+1 such vertices. 2

Claim 3.9 The following two properties hold at any point during Stage I.

(1) |A| ≥ εn/2;

(2) dB(v) ≤ εn/(10∆) holds for every vertex v ∈ A ∪ f(OT ).

Proof Starting with (1), note that |A| = n − |S| and that |S| = |V (T ′)| + |L′ ∩ S| holds
at the end of Stage I. Since |V (T ′)| ≤ n − εn it suffices to prove that |L′ ∩ S| ≤ εn/2. Let
w′ ∈ L′ ∩ S be an arbitrary vertex and let w = f(w′). Since Maker follows the proposed
strategy, D ∩ {w, f(NT (w′))} 6= ∅ must have been true at some point during Stage I. Using
Claim 3.8 we conclude that

|L′ ∩ S| ≤ 2n

∆k+1
≤ εn

2
.

Next, we prove (2). Let v ∈ A ∪ f(OT ) be an arbitrary vertex. If v was never a dangerous
vertex, then dB(v) < ∆k+1 ≤ εn/(10∆) holds by definition and since n is sufficiently large
with respect to ∆ and k. Otherwise, for as long as v ∈ D, Maker plays according to Case (1) of
the proposed strategy. Therefore, unless Maker forfeits the game, at some point during Stage
I she connects v to her tree (this requires zero moves in Case (i), one move in Case (ii)(a),
two moves in Case (ii)(b) and three moves in Case (ii)(c)). Since v can be removed from D
only in Case (i) or if f−1(v) is a leaf of T , it follows that, unless Maker forfeits the game, at
some point during Stage I she closes v. According to the proposed strategy for Case (i), this
requires at most ∆ moves. We conclude that Maker spends at most ∆+3 moves on connecting
a dangerous vertex to her tree and closing it. It thus follows by Claim 3.8 that

dB(v) ≤ ∆k+1 + (∆ + 3) · 2n

∆k+1
≤ ∆k+1 +

ε∆k

40
· 2n

∆k+1
≤ εn

10∆
,

where the last inequality holds since n is sufficiently large with respect to ∆ and k. 2

Claim 3.10 At any point during Stage I, if D 6= ∅ and v ∈ D is available, then at least one
of the conditions (a), (b) or (c) of Case (1)(ii) must hold.

Proof Suppose for a contradiction that none of (a), (b) and (c) hold. Since (a) does not hold
and since dB(v) ≤ εn/(10∆) holds by Part (2) of Claim 3.9, it follows that |NT (L) ∩ OT | ≤
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|OT | ≤ εn/(10∆). Since (b) does not hold, it follows that |OT \NT (L)| ≤ 1. Finally, since (c)
does not hold, it follows that if x ∈ OT \NT (L), then x ∈ NT (NT (L)). Therefore

|A| ≤ |NT (L) ∩ OT | ·∆ + |OT \NT (L)| · (∆ + ∆2)

≤ εn/(10∆) ·∆ + 1 · (∆ + ∆2)

< εn/2 ,

contrary to Part (1) of Claim 3.9. 2

Next, we consider each case of Stage I separately and prove that Maker can follow the proposed
strategy for that case.

(1) In this case D 6= ∅. Let v ∈ D be an arbitrary vertex.

(i) For as long as v is open we have dB(v) ≤ εn/(10∆) < εn/2− 2∆ ≤ |A| − 2∆, where
the first inequality holds by Part (2) of Claim 3.9 and the last inequality holds by
Part (1) of Claim 3.9. Maker can thus close v as instructed by the proposed strategy
for this case.

(ii) In this case (and all of its subcases) v is available.

(a) It readily follows by its description that Maker can follow the proposed strategy
for this subcase.

(b) Let u and w be open vertices as described in the proposed strategy for this
subcase. It follows by Parts (1) and (2) of Claim 3.9 that

dB(v) + dB(u) + dB(w) ≤ 3εn/(10∆) < εn/2 ≤ |A| .

We conclude that there exists a vertex z ∈ A such that the edges zv, zu and zw
are free.

(c) Similarly to Case (i) above, there exists a vertex w ∈ A such that the edge vw
is free. Similarly to case (ii)(b) above, there exists a vertex z ∈ A such that the
edges zv, zu and zw are free.

(2) Since D = ∅ and yet Stage I is not over, it follows that V (T ′) \ S 6= ∅. It follows that
OT ′ 6= ∅. Let u ∈ f(OT ′) be an arbitrary vertex. Since D = ∅, it follows that dB(u) <
∆k+1 < εn/2 ≤ |A|, where the last inequality follows from Part (1) of Claim 3.9. We
conclude that there exists a vertex v ∈ A such that uv is free.

Stage II: Since D = ∅ holds at the end of Stage I, it follows that δ(H) ≥ |A| −∆k+1. Since,
moreover, n is sufficiently large and |A| ≥ εn/2 holds by Part (1) of Claim 3.9, it follows by
Lemma 3.5 that Maker has a strategy to win the perfect matching game, played on E(H),
within |A|+ 2 moves.

At the end of Stage I, Maker’s graph is a tree isomorphic to T ′′. Hence, Stage I lasts exactly
|V (T ′′)|−1 moves. By Lemma 3.5, Stage II lasts at most |A|+2 = |V (T )|−|V (T ′′)|+2 moves.
We conclude that the entire game lasts at most |V (T )|+ 1 = n+ 1 moves. 2
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4 Building trees in optimal time

In this section we will prove Theorems 1.4 and 1.5. A central ingredient in the proofs of
both theorems is Maker’s ability to build a Hamilton path with some designated vertex as an
endpoint in optimal time. Our strategy for building a path quickly is based on the proof of
Theorem 1.4 from [14]. In particular, the first step is to build a perfect matching.

Lemma 4.1 For every sufficiently large integer r there exists an integer n0 = n0(r) such that
for every even integer n ≥ n0 and every graph G with n vertices and e(G) ≥

(
n
2

)
−n+ r edges,

Maker has a strategy to win the perfect matching game, played on E(G), within n/2+1 moves.

Proof The following notation and terminology will be used throughout this proof. At any
point during the game, let S denote the set of vertices of G which are isolated in Maker’s graph.
Let Br = ((Kn\G)∪B)[S]. For every free edge e ∈ G[S], let D(e) = | {f ∈ E(Br) : e ∩ f 6= ∅} |
denote the danger of e.

We present a strategy for Maker and then prove that it allows her to build a perfect matching
of G within n/2 + 1 moves. At any point during the game, if Maker is unable to follow the
proposed strategy, then she forfeits the game. The strategy is divided into the following two
stages.

Stage I: If there exists a free edge e ∈ G[S] such that D(e) ≥ 3, then Maker claims an
arbitrary such edge and repeats Stage I. Otherwise, she proceeds to Stage II.

Stage II: Maker builds a perfect matching of G[S] within |S|/2 + 1 moves.

It is evident that, if Maker can follow the proposed strategy without forfeiting the game, then
she wins the perfect matching game, played on E(G), within n/2 + 1 moves. It thus suffices
to prove that she can indeed do so.

It is clear by its description that Maker can follow Stage I of the proposed strategy without
forfeiting the game. In order to prove that she can also follow Stage II of the proposed strategy,
we first prove the following three claims.

Claim 4.2 e(Br) ≤ v(Br)− 2 holds at any point during Stage I.

Proof The required inequality holds before and immediately after Breaker’s first move since
e(Br) ≤ e(Kn \G) + 1 ≤ n− r + 1 ≤ n− 2 = v(Br)− 2 holds at that time, where the second
inequality holds by assumption and the third inequality holds since r ≥ 3. Assume that this
inequality holds immediately after Breaker’s jth move for some positive integer j. If Maker
plays her jth move in Stage I, then she claims an edge e ∈ G[S] such that D(e) ≥ 3. This
decreases v(Br) = |S| by 2 and e(Br) by at least 3. It follows that e(Br) ≤ v(Br) − 3 holds
immediately after Maker’s jth move. In his (j+1)st move, Breaker increases e(Br) by at most
1 and does not decrease v(Br). Hence e(Br) ≤ v(Br)− 2 holds immediately after his (j+ 1)st
move. 2

Claim 4.3 Maker plays at most (n− r)/2 moves in Stage I.

16



Proof In each round (that is, a move of Maker and a counter move of Breaker) of Stage
I, e(Br) is decreased by at least 2 (it is decreased by D(e) ≥ 3 in Maker’s move and then
increased by at most 1 in Breaker’s move). The claim now follows since e(Br) ≥ 0 holds at
any point during the game and e(Br) ≤ e(Kn \ G) + 1 ≤ n − r + 1 holds immediately after
Breaker’s first move. 2

Claim 4.4 Let m ≥ 6 be an even integer and let H = (V,E) be a graph on m vertices which
satisfies the following two properties:

(i) |{f ∈ E : e ∩ f 6= ∅}| ≤ 2 for every e ∈ E(Km) \ E.

(ii) For every u ∈ V there exists a vertex v ∈ V such that uv /∈ E.

Then there exists a partition V = A ∪B such that |A| = |B| = m/2 and eH(A,B) ≤ 1.

Proof Note that ∆(H) ≤ 2. Indeed, suppose for a contradiction that there exist vertices
u, v1, v2, v3 ∈ V such that uv1, uv2, uv3 ∈ E. It follows by Property (ii) that there exists a
vertex v4 ∈ V such that uv4 /∈ E. We thus have uv1, uv2, uv3 ∈ {f ∈ E : uv4∩f 6= ∅}, contrary
to Property (i).

Assume first that ∆(H) = 2 and let u, v, w ∈ V be such that uv, uw ∈ E. Let A be an arbitrary
subset of V \ {u, v, w} of size m/2 (such a set A exists since m ≥ 6) and let B = V \ A. We
claim that eH(A,B) = 0. Indeed, suppose for a contradiction that there exist vertices x ∈ A
and y ∈ B such that xy ∈ E. Since ∆(H) ≤ 2 and uv, uw ∈ E, it follows that ux ∈ E(Km)\E.
However, we then have uv, uw, xy ∈ {f ∈ E : ux ∩ f 6= ∅}, contrary to Property (i).

Assume then that ∆(H) ≤ 1, that is, H is a matching. Let E = {xiyi : 1 ≤ i ≤ `}, where
0 ≤ ` ≤ m/2 is an integer. Let A = {x1, . . . , xdm/4e, y1, . . . , ybm/4c} and let B = V \ A. Note
that |A| = |B| = m/2 and that EH(A,B) ⊆ {xdm/4eydm/4e} and thus eH(A,B) ≤ 1 as claimed.
2

We are now ready to prove that Maker can follow Stage II of the proposed strategy without
forfeiting the game. It follows by the description of Stage I of the proposed strategy that
D(e) ≤ 2 holds for every free edge e ∈ G[S] at the beginning of Stage II. Moreover, it follows
by Claim 4.2 that, immediately after Breaker’s last move in Stage I, for every u ∈ V there
is a free edge e such that u ∈ e. Therefore, the conditions of Claim 4.4 are satisfied (with
H = Br). Hence, there exists a partition S = A ∪ B such that eBr(A,B) ≤ 1. Let e be an
edge for which EG[S](A,B) ⊇ EKn(A,B) \ {e}. Maker (being the first to play in Stage II)
plays the perfect matching game on EKn(A,B) \ {e}. She pretends that she is in fact playing
as the second player on EKn(A,B) and that Breaker has claimed e in his first move. Since r
is sufficiently large and |S| ≥ n− 2(n− r)/2 = r holds by Claim 4.3, it follows by Theorem 3.4
that Maker has a strategy to win the perfect matching game, played on EKn(A,B), within
|S|/2 + 1 moves. 2

We will use Lemma 4.1 to prove the following result.

Lemma 4.5 There exists an integer m0 such that the following holds for every m ≥ m0. Let
G be a graph with m vertices and

(
m
2

)
− k edges, where k is a non-negative integer. Assume

that k ≤ (m− 25)/2 if m is odd and k ≤ (m− 28)/2 if m is even. Let x be an arbitrary vertex
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of G. Then, playing a Maker-Breaker game on E(G), Maker has a strategy to build in m− 1
moves a Hamilton path of G such that x is one of its endpoints.

Proof The following notation and terminology will be used throughout this proof. Given paths
P1 = (v1 . . . vt) and P2 = (u1 . . . ur) in a graph G for which vtu1 ∈ E(G), let P1 ◦ vtu1 ◦ P2

denote the path (v1 . . . vtu1 . . . ur). Let G be a graph on m vertices and let P0, P1, . . . , P` be
paths in G where P0 = {p0} is a special path of length zero and e(Pi) ≥ 1 for every 1 ≤ i ≤ `.
For every 1 ≤ i ≤ ` let End(Pi) denote the set of two endpoints of the path Pi and let
End =

⋃`
i=1End(Pi) ∪ {p0}. Let

X =

{
uv ∈ E(Km) : {u, v} ∈

(
End

2

)
and {u, v} 6= End(Pi) for every 1 ≤ i ≤ `

}
.

At any point during the game, let Br denote the graph with vertex set End and edge set
X ∩ (E(Km \ G) ∪ E(B)). The edges of X \ E(Br) are called available. For every available
edge e, let D(e) = | {f ∈ E(Br) : e ∩ f 6= ∅} | denote the danger of e.

Without loss of generality we can assume that m is odd (otherwise, in her first move, Maker
claims an arbitrary free edge xx′ and then plays on (G\B)[V (G)\{x}] with x′ as the designated
endpoint; note that k ≤ (m− 28)/2 =⇒ k + 1 ≤ [(m− 1)− 25]/2).

We present a strategy for Maker and then prove that it allows her to build the required path
in m − 1 moves. At any point during the game, if Maker is unable to follow the proposed
strategy, then she forfeits the game. The strategy is divided into the following five stages.

Stage I: Maker builds paths P1, . . . , P(m−3)/2 in G \ {x} which satisfy the following three
properties:

(a) e(P1) = 3.

(b) e(Pi) = 1 for every 2 ≤ i ≤ (m− 3)/2.

(c) V (Pi) ∩ V (Pj) = ∅ for every 1 ≤ i < j ≤ (m− 3)/2.

This stage lasts exactly (m− 1)/2 + 1 moves. As soon as it is over, Maker proceeds to Stage
II.

Stage II: Let p0 = x, let P0 = {p0}, let ` = (m− 3)/2 and let P = {P0, P1, . . . , P`}. For every
i ≥ (m − 1)/2 + 2, immediately before her ith move, Maker checks whether there exists an
available edge e ∈ X \ E(Br) such that D(e) ≥ 3. If there is no such edge, then this stage is
over and Maker proceeds to Stage III. Otherwise, in her ith move, Maker claims an arbitrary
such edge uv. She then updates P as follows. Let 0 ≤ i < j ≤ ` denote the unique indices
for which u ∈ V (Pi) and v ∈ V (Pj). Maker deletes Pj from P. Moreover, If i ≥ 1, then she
replaces Pi with Pi ◦ uv ◦Pj (which is now referred to as Pi) and if i = 0, then she sets p0 = z,
where z is the unique vertex in End(Pj) \ {v}. In both cases the set X is updated accordingly.

Stage III: If ∆(Br) ≤ 1, then this stage is over and Maker proceeds to Stage IV. Otherwise,
she claims an available edge uu′, where u ∈ End is an arbitrary vertex of degree at least 2 in
Br. Maker then updates P and X as in Stage II and repeats Stage III.

Stage IV: In her first move in this stage, Maker plays as follows. If there exists a vertex
w ∈ End such that p0w ∈ E(Br), then Maker claims an available edge wz. Otherwise, she
claims an arbitrary available edge. In either case she updates P and X as in Stage II.
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For every i ≥ 2, before her ith move in this stage, Maker checks how many paths are in P. If
there are exactly 3 paths, then this stage is over and she proceeds to Stage V; otherwise, she
plays as follows. Let uv denote the edge claimed by Breaker in his last move; assume without
loss of generality that u 6= p0. If uv /∈ X, then Maker claims an arbitrary available edge.
Otherwise she claims an available edge uw for some w ∈ End \ {p0}. In either case Maker
updates P and X as in Stage II and repeats Stage IV.

Stage V: Claiming two more edges, Maker connects her 3 paths to a Hamilton path of G such
that x is one of its endpoints.

It is evident that, if Maker can follow the proposed strategy without forfeiting the game, then
she builds a Hamilton path of G such that x is one of its endpoints in m − 1 moves. It thus
suffices to prove that she can indeed do so. We consider each stage separately.

Stage I: Since m is sufficiently large, k ≤ (m − 25)/2 and |V (G) \ {x}| = m − 1 is even, it
follows by Lemma 4.1 that Maker can follow the proposed strategy for this stage.

Stage II: It follows by its description that Maker can follow the proposed strategy for this
stage.

Stage III: In order to prove that Maker can follow the proposed strategy for this stage without
forfeiting the game, we will first prove the following three claims.

Claim 4.6 Maker plays at most (m+ 2k + 3)/4 moves in Stage II.

Proof Since Breaker claims exactly (m − 1)/2 + 2 edges of G before Maker’s first move in
Stage II, it follows that e(Br) ≤ (m − 1)/2 + 2 + k holds at that point. In each round (that
is, a move of Maker and a counter move of Breaker) of Stage II, e(Br) is decreased by at least
2 (it is decreased by D(e) ≥ 3 in Maker’s move and then increased by at most 1 in Breaker’s
move). The claim now follows since e(Br) ≥ 0 holds at any point during the game. 2

Claim 4.7 e(Br) ≤ |End| − 3 holds at any point during Stage II.

Proof At the end of Stage I, Maker’s graph consists of (m − 5)/2 paths of length 1 each, 1
path of length 3, and 1 special path P0 = {x} of length 0. Hence, |End| = m− 2 holds at the
beginning of Stage II. Since Breaker claims exactly (m − 1)/2 + 2 edges of G before Maker’s
first move of Stage II, it follows that e(Br) ≤ (m − 1)/2 + 2 + k ≤ m − 5 = |End| − 3 holds
at that point, where the last inequality holds by the assumed upper bound on k. Assume that
e(Br) ≤ |End|−3 holds immediately after Breaker’s jth move for some integer j ≥ (m−1)/2+2.
If Maker plays her jth move in Stage II, then she claims an available edge e such that D(e) ≥ 3.
This decreases |End| by 2 and e(Br) by at least 3. It follows that e(Br) ≤ |End| − 4 holds
immediately after Maker’s jth move. In his (j+1)st move, Breaker increases e(Br) by at most
1 and does not decrease |End|. Hence e(Br) ≤ |End| − 3 holds immediately after his (j + 1)st
move. 2

Claim 4.8 The following three properties hold immediately before Maker’s first move of Stage
III:

(i) |End| ≥ (m− 2k − 7)/2.
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(ii) ∆(Br) ≤ 2.

(iii) Br is a matching or a subgraph of K3 or a subgraph of C4 whose vertices are End(Pi) ∪
End(Pj) for some 1 ≤ i < j ≤ `.

Proof As shown in the proof of Claim 4.7, |End| = m−2 holds at the beginning of Stage II. In
each of her moves in Stage II, Maker decreases |End| by exactly 2. Since, by Claim 4.6 Maker
plays at most (m+2k+3)/4 moves in Stage II, it follows that |End| ≥ (m−2)−(m+2k+3)/2 =
(m− 2k − 7)/2 holds at the end of Stage II; this proves (i).

Next, we prove (ii). suppose for a contradiction that there are vertices u, v1, v2, v3 ∈ End such
that uv1, uv2, uv3 ∈ E(Br) at the end of Stage II. It follows by Claim 4.7 that there exists a ver-
tex v4 ∈ End such that the edge uv4 is available. Clearly uv1, uv2, uv3 ∈ {f ∈ E(Br) : uv4 ∩ f 6= ∅}.
Therefore, D(uv4) ≥ 3 contrary to our assumption that Stage II is over.

Finally, we prove (iii). It follows by (ii) that ∆(Br) ≤ 2. If ∆(Br) ≤ 1, then Br is a
matching. Assume then that there are vertices u, v, w ∈ End such that uv, uw ∈ E(Br).
Let 1 ≤ i ≤ ` be the unique index such that u ∈ V (Pi) and let u′ = End(Pi) \ {u}. We
claim that dBr(z) = 0 for every z ∈ End \ {u, v, w, u′}. Indeed, suppose for a contradiction
that there exist vertices z ∈ End \ {u, v, w, u′} and z′ ∈ End such that zz′ ∈ E(Br). Since
∆(Br) ≤ 2, z /∈ {u, v, w, u′} and uv, uw ∈ E(Br), it follows that uz is available. However,
we then have uv, uw, zz′ ∈ {f ∈ E(Br) : uz ∩ f 6= ∅}. Therefore, D(uz) ≥ 3 contrary to our
assumption that Stage II is over. If dBr(u

′) = 0 as well, then E(Br) ⊆ {uv, uw, vw}, that
is, Br is a subgraph of K3. Assume then without loss of generality that u′w ∈ E(Br). Since
∆(Br) ≤ 2 holds by (ii), it follows that vw /∈ E(Br). If on the other hand vw is available,
then uv, uw, u′w ∈ {f ∈ E(Br) : vw∩ f 6= ∅} contrary to our assumption that Stage II is over.
It follows that {v, w} = End(Pj) for some 1 ≤ j ≤ ` and that E(Br) ⊆ {uv, uw, u′v, u′w}. 2

We can now prove that Maker can follow the proposed strategy for this stage without forfeiting
the game. While doing so we will also show that she plays at most 2 moves in Stage III. It
follows by Part (iii) of Claim 4.8 that, immediately before Maker’s first move in Stage III,
the graph Br is a matching or a subgraph of K3 or a subgraph of C4 whose vertices are
End(Pi) ∪ End(Pj) for some 1 ≤ i < j ≤ `. In the first case, ∆(Br) ≤ 1 and thus Maker
plays no moves in Stage III. Next, assume that {uv, uw} ⊆ E(Br) ⊆ {uv, uw, vw} for some
u, v, w ∈ End. Assume without loss of generality that Maker claims uy in her first move
of Stage III. Since e(Br) ≤ 3 holds immediately before this move, it follows by Part (i) of
Claim 4.8 and by the assumed upper bound on k from Lemma 4.5 that such an available
edge exists. Let zz′ denote the edge claimed by Breaker in his subsequent move. Note that
E(Br) ⊆ {vw, zz′} holds at this point. If {v, w}∩{z, z′} = ∅, then Br is a matching and Stage
III is over. Assume then without loss of generality that v = z. In her second move of Stage
III, Maker claims an available edge vz′′. Since e(Br) ≤ 2 holds immediately before this move,
it follows that such an available edge exists. Clearly, e(Br) ≤ 1 must hold after Breaker’s next
move. It follows that Maker will not play any additional moves in Stage III. Finally, assume
that there are indices 1 ≤ i < j ≤ ` such that End(Pi) = {u, u′}, End(Pj) = {v, v′} and
E(Br) ⊆ {uv, uv′, u′v, u′v′}. Assume without loss of generality that Maker claims uy in her
first move of Stage III. Since e(Br) ≤ 3 holds immediately before this move, it follows that
such an available edge exists. Let zz′ denote the edge claimed by Breaker in his subsequent
move. Note that E(Br) ⊆ {u′v, u′v′, zz′} holds at this point. Since vv′ /∈ X, it follows that
zz′ 6= vv′; assume without loss of generality that z /∈ {v, v′}. In her second move of Stage
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III, Maker claims u′z if z′ 6= u′ and an available edge u′z′′ otherwise. Since e(Br) ≤ 3 holds
immediately before this move, it follows that such an available edge exists. Clearly, e(Br) ≤ 1
must hold after Breaker’s next move. It follows that Maker will not play any additional moves
in Stage III.

Stage IV: In order to prove that Maker can follow the proposed strategy for this stage without
forfeiting the game, we will first prove the following two claims.

Claim 4.9 At the end of Stage III, Maker’s graph consists of at least 4 paths.

Proof It follows by Part (i) of Claim 4.8 that |End| ≥ (m − 2k − 7)/2 holds at the end of
Stage II. Since, as noted above, Maker plays at most 2 moves in Stage III, it follows that
|End| ≥ (m − 2k − 11)/2 ≥ 7 holds at the end of that stage, where the last inequality holds
by the assumed upper bound on k. The claim readily follows. 2

Claim 4.10 The following two properties hold immediately after each of Maker’s moves in
this stage:

(i) dBr(p0) = 0.

(ii) ∆(Br) ≤ 1.

Proof It follows by the description of Stage III of the proposed strategy that Property (ii)
holds immediately before Maker’s first move in Stage IV. It thus follows by the description of
Maker’s first move in this stage, that both properties hold after this move. Assume then that
both properties hold immediately after Maker’s ith move of this stage for some i ≥ 1. Let
uv denote the edge claimed by Breaker in his ith move of this stage (recall that Maker is the
first to play in Stage IV), where u 6= p0. Assume that uv ∈ X as otherwise there is nothing
to prove. Note that dBr(w) ≤ 1 holds for every w ∈ End \ {u, v} at this point. Unless she
forfeits the game, in her (i+ 1)st move of this stage, Maker claims an available edge uw such
that w ∈ End \ {p0}. This does not change p0, removes u from End and decreases dBr(v) by
1. It follows that dBr(v) ≤ 1 and that dBr(v) = 0 if v = p0. 2

It follows by Claim 4.9 and by the description of the proposed strategy for Stage IV that
|End| ≥ 7 holds immediately before each of Maker’s moves in Stage IV. It thus follows by
Property (ii) from Claim 4.10 that Maker can follow the proposed strategy for this stage
without forfeiting the game.

Stage V: It follows by Claim 4.9 and by the description of the proposed strategy for Stage IV
that Maker’s graph consists of exactly 3 paths (one of which is p0) in the beginning of Stage V.
Using Properties (i) and (ii) from Claim 4.10, one can show via a simple case analysis (whose
details we omit) that, regardless of Breaker’s strategy, Maker can claim two available edges
such that the resulting graph is a Hamilton path with x as an endpoint. 2

We now turn to the proof of Theorem 1.4 whose main idea is the following. Similarly to the
proof of Theorem 1.3 given in Section 3, Maker starts by embedding a tree T ′′ ⊆ T while
limiting Breaker’s degrees in certain vertices. In contrast to the proof of Theorem 1.3, where
T \T ′′ is a matching of linear size, in the current proof T \T ′′ consists of linearly many pairwise
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vertex-disjoint bare paths of length k each, where k is a fixed large constant. We then embed
the paths of T \ T ′′, recalling that for each of them, one endpoint was previously embedded.
The main tool used for this latter part is Lemma 4.5.

In order to prove Theorem 1.4 we will require the following results.

Theorem 4.11 (Theorem 3 in [18]) Let T be a tree, chosen uniformly at random from
the class of all labeled trees on n vertices. Then asymptotically almost surely, ∆(T ) = (1 +
o(1)) log n/ log log n.

Lemma 4.12 For every positive integer k there exists a real number ε > 0 such that the
following holds for every sufficiently large integer n. Let T be a tree, chosen uniformly at
random from the class of all labeled trees on n vertices. Then asymptotically almost surely T
is such that there exists a family P which satisfies all of the following properties:

(1) Every P ∈ P is a bare path of length k in T .

(2) |P| ≥ εn.

(3) For every P ∈ P, one of the vertices in End(P ) is a leaf of T .

(4) If P1 ∈ P and P2 ∈ P are two distinct paths, then V (P1) ∩ V (P2) = ∅.

Lemma 4.12 is an immediate corollary of Lemma 3 from [1]; we omit the straightforward
details.

Lemma 4.13 Let k and q be integers and let X and Y be sets such that |X| = q and |Y | = kq.
Let H be a graph, where V (H) = X ∪ Y , which satisfies the following properties:

(a) ∆(H[Y ]) ≤ q − 1.

(b) dH(u, Y ) ≤ q/2 for every u ∈ X.

(c) dH(u,X) ≤ q/(2k) for every u ∈ Y .

Then there exists a partition V (H) = V1 ∪ . . . ∪ Vq such that the following properties hold for
every 1 ≤ i ≤ q:

(i) |X ∩ Vi| = 1.

(ii) |Y ∩ Vi| = k.

(iii) E(H[Vi]) = ∅.

In the proof of Lemma 4.13 we will make use of the following well known result due to Hajnal
and Szemerédi [12].

Theorem 4.14 (Theorem 1 in [12]) Let G be a graph on n vertices and let r be a positive
integer. If ∆(G) ≤ r − 1, then there exists a proper r-colouring of the vertices of G such that
every colour class has size bn/rc or dn/re.
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Proof of Lemma 4.13 Since ∆(H[Y ]) ≤ q − 1 holds by Property (a), it follows by Theo-
rem 4.14 that there exists a partition Y = U1 ∪ . . . ∪ Uq such that |Ui| = k and E(H[Ui]) = ∅
hold for every 1 ≤ i ≤ q. Let U = {U1, . . . , Uq} and let G be the bipartite graph with parts
X := {x1, . . . , xq} and U where, for every 1 ≤ i, j ≤ q there is an edge of G between xi and
Uj if and only if dG(xi, Uj) = 0. Since δ(G) ≥ q/2 holds by Properties (b) and (c), it follows
by Hall’s Theorem (see, e.g. [20]) that G admits a perfect matching. Assume without loss of
generality that {xiUi : 1 ≤ i ≤ q} is such a matching. For every 1 ≤ i ≤ q let Vi = Ui ∪ {xi}.
It is easy to see that the partition V (H) = V1 ∪ . . . ∪ Vq satisfies Properties (i), (ii) and (iii).
2

Proof of Theorem 1.4 Let k be a sufficiently large integer (e.g. m0 from Lemma 4.5 is large
enough) and let n be sufficiently large with respect to k. Let T be a tree, chosen uniformly
at random from the class of all labeled trees on n vertices. It follows by Theorem 4.11 that,
asymptotically almost surely, ∆(T ) = (1 + o(1)) log n/ log log n and by Lemma 4.12 that there
exists a family P of εn pairwise vertex-disjoint bare paths of T , such that for every P ∈ P,
P = (vP0 . . . v

P
k ) and vPk is a leaf of T . From now on we will thus assume that the tree T

satisfies these properties.

Let

T ′ = T \

( ⋃
P∈P

(
V (P ) \ {vP0 }

))
.

Throughout the game, Maker maintains a set S ⊆ V (T ) of embedded vertices, an S-partial
embedding f of T in Kn\B and a set A = V (Kn)\f(S) of available vertices. Initially, S = {v′}
and f(v′) = v, where v′ ∈ V (T ′) and v ∈ V (Kn) are arbitrary vertices.

First we describe a strategy for Maker in (E(Kn), Tn) and then prove that it allows her to build
a copy of T within n − 1 moves. At any point during the game, if Maker is unable to follow
the proposed strategy, then she forfeits the game. Certain parts of the proposed strategy are
very similar to the strategy described in the proof of Theorem 1.3. Therefore, we describe
these parts rather briefly while elaborating considerably where the two strategies differ. The
proposed strategy is divided into the following three stages.

Stage I: Maker builds a tree T ′′ such that the following properties hold at the end of this
stage:

(1) T ′ ⊆ T ′′ ⊆ T .

(2) dB(v) ≤ 2
√
n log n for every vertex v ∈ A ∪ f(OT ).

(3) |{P ∈ P : vP1 ∈ S}| ≤
√
n (in particular, |V (T ′′)| ≤ n− εn).

Moreover, Maker does so in exactly |V (T ′′)| − 1 moves.

Stage II: In this stage Maker completes the embedding of every path P ∈ P which was
partially embedded in Stage I. For every P ∈ P, let 0 ≤ iP ≤ k denote the largest integer such
that vPiP ∈ S. For as long as there exists a path P ∈ P for which 0 < iP < k, Maker plays as
follows. She picks an arbitrary path P ∈ P for which 0 < iP < k and claims an arbitrary free
edge f(vPiP )u, where u ∈ A. Subsequently, Maker updates S and f by adding vPiP +1 to S and

setting f(vPiP +1) = u.
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As soon as iP ∈ {0, k} holds for every P ∈ P, Stage II is over and Maker proceeds to Stage
III.

Stage III: Let f(OT ) = {x1, . . . , xq} and let A∪ {x1, . . . , xq} = V1 ∪ . . .∪ Vq be a partition of
A ∪ {x1, . . . , xq} such that the following properties hold for every 1 ≤ i ≤ q:

(a) |Vi| = k + 1.

(b) xi ∈ Vi.

(c) E(B[Vi]) = ∅.

For every 1 ≤ i ≤ q let Si be a strategy for building a Hamilton path of (Kn \ B)[Vi] such
that xi is one of its endpoints in |Vi| − 1 moves. Maker plays q such games in parallel, that
is, whenever Breaker claims an edge of Kn[Vi] for some 1 ≤ i ≤ q for which M [Vi] is not yet
a Hamilton path, Maker plays in (Kn \B)[Vi] according to Si. In all other cases, she plays in
(Kn \B)[Vj ] according to Sj , where 1 ≤ j ≤ q is an arbitrary index for which M [Vj ] is not yet
a Hamilton path.

It is evident that if Maker can follow the proposed strategy without forfeiting the game, then
she builds a copy of T in n− 1 moves. It thus suffices to prove that Maker can indeed do so.
We consider each of the three stages separately.

Stage I: The exact details of Maker’s strategy for this stage and the proof that she can
follow it without forfeiting the game are essentially the same as those for Stage I in the proof
of Theorem 1.3. There are a few differences which arise since ∆(T ) is not bounded (but
not too large either – see Theorem 4.11) and since T \ T ′ consists of pairwise vertex-disjoint
long bare paths, rather than a matching. Defining a vertex v ∈ A ∪ f(OT ) to be dangerous if
dB(v) ≥

√
n log n ensures that at most 2

√
n/ log n vertices become dangerous throughout Stage

I similarly to Claim 3.8. Since the paths in P are pairwise vertex-disjoint, ∆(T ) = o(log n)
and 2

√
n log n ≤ εn/(10∆(T )), it follows that Claims 3.9 and 3.10 hold as well. The remaining

details are omitted.

Stage II: Since e(P ) = k holds for every P ∈ P, it follows by Property (3) that Stage II lasts
O(k
√
n) moves and that |A| = Θ(n) holds at any point during this stage. Since n is sufficiently

large with respect to k, it follows by Property (2) that dB(v) = O(
√
n log n) holds for every

vertex v ∈ A ∪ f(OT ) at any point during this stage. We conclude that Maker can indeed
follow the proposed strategy for this stage.

Stage III: Since, as noted above, dB(v) = O(
√
n log n) holds for every vertex v ∈ A∪f(OT ) at

the end of Stage II and since n is sufficiently large with respect to k, it follows by Lemma 4.13
that the required partition exists. Moreover, it follows by Property (c), by the choice of k and
by Lemma 4.5 that Maker can follow the proposed strategy for this stage. 2

We end this section with a proof of Theorem 1.5. The main idea is similar to the proof of
Theorem 1.2 given in Section 2. That is, we first embed the tree T except for a sufficiently
long bare path P between a leaf and another vertex and then embed P , recalling that one of
its endpoints was already embedded. We will do so without wasting any moves. We can thus
use Theorem 2.1 for the former and Lemma 4.5 for the latter.
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Proof of Theorem 1.5 Let k =
(

∆
2

)
+ 1, let m0 = m0(k) be the constant whose existence

follows from Lemma 4.5 and let m3 = max{m0, (∆ + 1)2}. Let P be a bare path in T of length
m3 with endpoints x′1 and x′2, where x′2 is a leaf. Let T ′ be the tree which is obtained from T
by deleting all the vertices in V (P ) \ {x′1}.

Maker’s strategy consists of two stages. In the first stage she embeds T ′ using the strategy
whose existence follows from Theorem 2.1 (with r = 1) while ensuring that Properties (i) and
(ii) are satisfied. Let f : T ′ →M be an isomorphism, let x1 = f(x′1), let A = V (Kn)\f(V (T ′)),
let U = A ∪ {x1} and let G = (Kn \B)[U ].

In the second stage she embeds P into G such that x1 is the non-leaf endpoint. She does so
using the strategy whose existence follows from Lemma 4.5 which is applicable by the choice
of m3 and by Property (ii). Hence, T ⊆M holds at the end of the second stage, that is, Maker
wins the game.

It follows by Theorem 2.1 that the first stage lasts exactly v(T ′) − 1 = n − |V (P )| = n − |U |
moves. It follows by Lemma 4.5 that the second stage lasts exactly |U | − 1 moves. Therefore,
the entire game lasts exactly n− 1 moves as claimed. 2

5 Concluding remarks and open problems

Building trees in the shortest possible time.

As noted in the introduction, there are trees T on n vertices with bounded maximum degree
which Maker cannot build in n− 1 moves. In this paper we proved that Maker can build such
a tree T in at most n moves if it admits a long bare path and in at most n+ 1 moves if it does
not. We do not believe that there are bounded degree trees that require Maker to waste more
than one move. This leads us to make the following conjecture.

Conjecture 5.1 Let ∆ be a positive integer. Then there exists an integer n0 = n0(∆) such
that for every n ≥ n0 and for every tree T = (V,E) with |V | = n and ∆(T ) ≤ ∆, Maker has a
strategy to win the game (E(Kn), Tn) within n moves.

It follows by Theorem 1.2 that the assertion of Conjectute 5.1 is true for bounded degree
trees which admit a long bare path; the problem is with trees that do not admit such a path.
Nevertheless, we can prove Conjectute 5.1 for many (but not all) such trees as well. For
example, we can prove (but omit the details) that Maker has a strategy to build a complete
binary tree in n moves (recall from the introduction that this is tight).

Building trees without wasting moves.

As previously noted, there are trees which Maker can build in n− 1 moves (such as the path
on n vertices) and there are trees which require at least n moves (such as the complete binary
tree). It would be interesting to characterize the family of all (bounded degree) trees on n
vertices which, playing on Kn, Maker can build in exactly n− 1 moves.

Strong tree embedding games.
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As noted in [8], an explicit very fast winning strategy for Maker in a weak game can sometimes
be adapted to an explicit winning strategy for Red in the corresponding strong game. Since it
was proved in [10] that Maker has a strategy to win the weak tree embedding game (E(Kn), Tn)
within n + o(n) moves, it was noted in [9] that one could be hopeful about the possibility of
devising an explicit winning strategy for Red in the corresponding strong game. The first step
towards this goal is to find a much faster strategy for Maker in the weak game (E(Kn), Tn).
This was accomplished in the current paper.

Building trees quickly on random graphs.

The study of fast winning strategies for Maker on random graphs was initiated in [7]. The
problem of determining the values of p = p(n) for which asymptotically almost surely Maker
can win (E(G(n, p)), Tn) quickly (say, within n+o(n) moves), where T is any tree with bounded
maximum degree was raised in that paper. Note that the game (E(Kn), Tn) studied in this
paper is the special case with p = 1. It seems plausible that the methods developed in the
current paper combined with those of [7] could be helpful when addressing this problem. It
should however be noted that the exact threshold for the appearance in G(n, p) of some fixed
bounded degree spanning tree is not known in general and is an important open problem in the
theory of random graphs. It would thus be very hard to answer the analogous general question
for games. However, the exact threshold is known in several special cases, such as trees with
linearly many leaves [13]. Therefore, one could try to adjust the proof of Theorems 1.3 to
G(n, p) with p being as close as possible to the threshold log n/n. Moreover, a weaker (but
far from trivial) general upper bound was proved in [17] so one could at least try to prove
that Maker wins quickly on these denser random graphs. Finally, note that some results about
(E(G(n, p)), Tn), where p ≥ Cn−1/3 log2 n, follow from more general results proved in [16].
However, even for this range of probabilities, a different argument is needed in order to prove
that Maker wins quickly.
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