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Abstract

We study Maker-Breaker games played on the edge set of a random graph. Specifically, we analyze

the moment a typical random graph process first becomes a Maker’s win in a game in which Maker’s

goal is to build a graph which admits some monotone increasing property P. We focus on three natural

target properties for Maker’s graph, namely being k-vertex-connected, admitting a perfect matching, and

being Hamiltonian. We prove the following optimal hitting time results: with high probability Maker

wins the k-vertex connectivity game exactly at the time the random graph process first reaches minimum

degree 2k; with high probability Maker wins the perfect matching game exactly at the time the random

graph process first reaches minimum degree 2; with high probability Maker wins the Hamiltonicity game

exactly at the time the random graph process first reaches minimum degree 4. The latter two statements

settle conjectures of Stojaković and Szabó. We also prove generalizations of the latter two results; these

generalizations partially strengthen some known results in the theory of random graphs.

An extended abstract of this paper was previously published in [4].

1 Introduction

Let X be a finite set and let F ⊆ 2X be a family of subsets. In the positional game (X,F), two players take

turns in claiming one previously unclaimed element of X and the game ends when all of the elements of X

have been claimed by either of the players. The set X is often referred to as the board of the game. Positional

games have attracted a lot of attention in the past decade and a thorough introduction to this field with

a plethora of results can be found in a recent monograph of Beck [3]. In a Maker-Breaker-type positional

game, the two players are called Maker and Breaker and the members of F are referred to as the winning

sets. Maker wins the game if he occupies all elements of some winning set; otherwise Breaker wins. We will

always assume that Breaker starts the game. We say that a game (X,F) is a Maker’s win if Maker has a

strategy (that can be adaptive to Breaker’s moves) that ensures his win in this game against any strategy

of Breaker, otherwise the game is a Breaker’s win. Note that X and F alone determine whether the game
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is a Maker’s win or a Breaker’s win. A classical example of this Maker-Breaker setting is the popular board

game HEX.

1.1 Maker-Breaker games on graphs

Let G = (V,E) be a graph and let P be a monotone increasing graph property on V (a family of graphs on V ,

closed under isomorphism and addition of edges). Consider the Maker-Breaker game (E,FP) whose board

is E, the edge set of G. The game is won by Maker if and only if the graph spanned by the edges he claims

throughout the game satisfies the property P. We denote the family of graphs G for which the (E(G),FP)

game is a Maker’s win by MP . Although the property MP is described in game-theoretic terms, it should

be noted that the games (E(G),FP) are finite perfect information games with no chance moves, and thus

MP is some graph property which clearly satisfiesMP ⊆ P. Moreover, since P is monotone increasing,MP
is clearly monotone increasing as well. By considering monotone increasing graph properties, the game can

be terminated as soon as the graph spanned by Maker’s edges satisfies the property, regardless of whether

all edges have been claimed or not. This leads to several natural questions. First, how sparse can a graph

G ∈MP be? In this context, playing on random graphs (where the density of the graph is chosen according

to the property at hand) becomes very natural. The systematic study of this setting was initiated in [26]

by Stojaković and Szabó, and this current work is a further exploration of it. Second, one can also study

the minimum number of moves needed for Maker in order to win the game (see e.g. [2, 24, 13, 15, 18]).

Although “winning fast” is not in the focus of this current paper, we will see how an upper bound on the

number of moves required by Maker to win the game helps, and is in fact crucial, in the analysis of Maker’s

winning strategy.

1.2 Random graphs

The most widely used random graph model is the Binomial random graph, G(n, p). In this model we start

with n vertices, labeled, say, by V = {1, . . . , n} = [n], and select a graph on these n vertices by going over

all
(
n
2

)
pairs of vertices, deciding independently with probability p for a pair to be an edge. The model

G(n, p) is thus a probability space of all labeled graphs on the vertex set [n] where the probability of such

a graph, G = ([n], E), to be selected is p|E|(1 − p)(
n
2)−|E|. This product probability space provides us with

a wide variety of probabilistic tools for analyzing the behavior of various random graph properties. (See

monographs [8] and [19] for a thorough introduction to the subject of random graphs). In the subsequent

sections we will need at some point to employ a slightly generalized model. Let F ⊆
(
V
2

)
be an arbitrary

subset and let G(n, p)−F := G(n, p) \ F .

Although the Binomial random graph model is very natural and relatively easy to use, it was not the

first model to be considered. In their seminal paper, Erdős and Rényi considered the uniform probability

space over all graphs on a fixed set of vertices with exactly M edges, G(n,M). Note that for any value of p,

if we condition the random graph G(n, p) to have exactly M edges, then we obtain exactly the Erdős-Rényi

random graph model. The similarity of the two models enables us to prove the occurrence of events in the

G(n, p) model and get the corresponding result in the G(n,M) model.

Proposition 1.1 ([19], Proposition 1.13). Let P = P(n) be a sequence of monotone increasing graph

properties, 0 ≤ a ≤ 1 and 0 ≤ M ≤
(
n
2

)
be an integer. If for every sequence p = p(n) ∈ [0, 1] such that p =

2



M/
(
n
2

)
±O

(
M
((
n
2

)
−M

)
/
(
n
2

)3)
it holds that limn→∞ Pr [G(n, p) ∈ P] = a, then limn→∞ Pr [G(n,M) ∈ P] =

a.

The converse result to Proposition 1.1 holds1 as well (see e.g. Proposition 1.12 in [19]); this enables us

to transfer results from one model to the other. Unfortunately, not all properties we will encounter and

explore are monotone increasing, and hence Proposition 1.1 cannot be used in those cases. Nonetheless, we

would like to take advantage of the “ease” of calculations in the G(n, p) model (due to the independence of

appearance of its edges), and transfer the results to the G(n,M) model, for the appropriate values of M . To

achieve this we will use this more crude estimate (see e.g. [19]), which will suffice for our purposes.

Claim 1.2 ([19], inequality (1.6)). Let P be a property of graphs on n vertices and let 1 ≤ M ≤
(
n
2

)
be an

integer. Setting p = M/
(
n
2

)
we have Pr [G(n,M) ∈ P] ≤ 3

√
M · Pr [G(n, p) ∈ P].

Next, we consider the following generation process of graphs. Given a set V of n vertices and an

ordering on the pairs of vertices π :
(
V
2

)
→
[(
n
2

)]
, we define a graph process to be a sequence of graphs

G̃ = G̃(π) = {Gt}
(n
2)
t=0 on V . Starting with G0 = (V, ∅), for every integer 1 ≤ t ≤

(
n
2

)
, the graph Gt is

defined by Gt := Gt−1 ∪π−1(t). For a given graph process G̃ on V , we define the hitting time of a monotone

increasing graph property P on V as

τ(G̃;P) = min{t : Gt ∈ P}. (1)

When selecting π uniformly at random, the process G̃(π) is usually called the random graph process. If

G̃ = {Gt}
(n
2)
t=0 is the random graph process, then, for every 0 ≤ M ≤

(
n
2

)
, the graph GM is distributed

according to G(n,M), that is, GM ∼ G(n,M). This shows that analyzing the hitting time of a monotone

increasing property P is in fact a refinement of the study of values of M and p for which G(n,M) ∈ P and

G(n, p) ∈ P respectively (where to get the values of p we employ the converse of Proposition 1.1 as stated

above).

For every positive integer k let δk denote the graph property of having minimum degree at least k, let

ECk denote the graph property of being k-edge connected, let VCk denote the graph property of being k-

vertex connected, and let HAM denote the graph property of admitting a Hamilton cycle. Two cornerstone

results in the theory of random graphs are that of Bollobás and Thomason [10] who proved that for every

1 ≤ k ≤ n− 1, with high probability (or w.h.p. for brevity)2 τ(G̃; δk) = τ(G̃; ECk) = τ(G̃;VCk), and that of

Komlós and Szemerédi [21] who proved that w.h.p. τ(G̃; δ2) = τ(G̃;HAM) (see also [7]). Note that these

two results (and many others which have succeeded) provide a very strong indication that the “bottleneck”

for such properties in random graphs is in fact the vertices of minimum degree. The results of this paper are

of the very same nature.

1.3 Motivation and previous results

Given a graph G with minimum degree at most 2k − 1, when playing on the board E(G) Breaker can keep

claiming edges incident to some vertex of minimum degree, and with the advantage of playing first will thus

leave Maker with a graph containing a vertex of degree at most k − 1. This implies that Breaker wins the

1In fact, when moving from G(n,M) to G(n, p) the monotonicity requirement is not necessary.
2In this paper, we say that a sequence of events An in a random graph model occurs w.h.p. if the probability of An tends

to 1 as the number of vertices n tends to infinity.
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k-edge-connectivity game (E(G),FECk) for such graphs, and therefore τ(G̃;MECk) ≥ τ(G̃; δ2k) for every

graph process G̃. In [26] Stojaković and Szabó were the first to consider Maker-Breaker games played on

random graphs. By combining theorems of Lehman [22] and of Palmer and Spencer [23], they observed that

for every fixed positive integer k, if G̃ is the random graph process, then w.h.p. τ(G̃;MECk) = τ(G̃; δ2k),

thus providing a very precise hitting time result for the edge-connectivity game3. Similarly to the edge-

connectivity case we have that for every graph process G̃

τ(G̃; δ2k) ≤ τ(G̃;MVCk). (2)

Let PM denote the graph property of admitting a matching of size bn/2c in a graph on n vertices. Every

graph G on an even number of vertices with minimum degree at most 1 is a win for Breaker in the perfect

matching game (E(G),FPM). Hence, for every graph process G̃ on an even number of vertices

τ(G̃; δ2) ≤ τ(G̃;MPM). (3)

In [26] Stojaković and Szabó conjectured that if G̃ is the random graph process, then w.h.p. equality

holds in (3). Although they did not prove this conjecture, in [26] they proved that if p > 64 lnn
n , then

w.h.p. G(n, p) ∈ MPM. Note that this result is optimal in p up to multiplicative constant factor, for if

p ≤ lnn+ln lnn−ω(1)
n , where ω(1) is some function which tends to infinity with n arbitrarily slowly, then w.h.p.

δ(G(n, p)) ≤ 1, and hence by (3), w.h.p. G(n, p) /∈MPM.

Clearly, every graph G with minimum degree at most 3 is a win for Breaker in the Hamiltonicity game

(E(G),FHAM). Hence, we have that for every graph process G̃

τ(G̃; δ4) ≤ τ(G̃;MHAM). (4)

In [26] Stojaković and Szabó conjectured that if G̃ is the random graph process, then w.h.p. equality holds

in (4).

One of the first results in the field of Maker-Breaker games on graphs is due to Chvátal and Erdős in their

seminal paper [11], which states that Kn ∈MHAM for sufficiently large values of n (in [18] the third author

and Stich proved that n ≥ 38 suffices). The problem of finding sparse graphs which are a win for Maker was

addressed by Hefetz et. al. [17] where they showed that, for sufficiently large values of n, there exists a graph

G ∈MHAM on n vertices with e(G) ≤ 21n. Playing the Hamiltonicity game (E(G),FHAM) on the random

graph G(n, p) was first considered in the original paper of Stojaković and Szabó [26] where they proved that

if p > 32 lnn√
n

, then w.h.p. G(n, p) ∈ MHAM. Later, Stojaković [25] found the correct order of magnitude

proving that p > 5.4 lnn/n suffices for G(n, p) to be w.h.p. Maker’s win in the Hamiltonicity game. This

requirement on p was subsequently improved to p ≥ lnn+(ln lnn)s

n , where s is some large but fixed constant,

by Hefetz et. al. [16]. Note that this result is very close to being optimal, for if p = lnn+3 ln lnn−ω(1)
n ,

where ω(1) is some function which tends to infinity with n arbitrarily slowly, then w.h.p. δ(G(n, p)) < 4 and

hence by (4) w.h.p. G(n, p) /∈ MHAM. Lastly, in [5] the first and fourth authors with Sudakov studied the

Hamiltonicity game played on the edges of random regular graphs (the uniform probability measure over all

d-regular graphs on a fixed vertex set) and proved that for large enough constant values of d this game is

Maker’s win.

3In [26] only the case of k = 1 is explicitly mentioned, but it can be generalized for any positive integer k in a straightforward

manner.
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1.4 Our results

In this paper we address the aforementioned Maker-Breaker games on random graphs, namely when Maker’s

goal is to build graphs which satisfy the properties of being k-vertex connected, admitting a perfect matching,

and being Hamiltonian. Specifically, the main objective of this paper is to prove that the trivial minimum

degree requirement as stated in (2), (3), and (4) is actually the bottleneck for a typical random graph to be

a win for Maker in all of the above mentioned games. The following results will thus be proved.

Theorem 1. For every fixed integer k ≥ 1, if G̃ is the random graph process, then w.h.p.

τ(G̃;MVCk) = τ(G̃; δ2k).

For every positive integer k it holds that VCk ⊆ ECk, hence Theorem 1 is in fact an improvement of the

aforementioned result of Stojaković and Szabó in [26].

The following result for the prefect matching game is also proved.

Theorem 2. If G̃ is the random graph process on an even number of vertices, then w.h.p.

τ(G̃;MPM) = τ(G̃; δ2).

Theorem 2 settles a conjecture raised in [26]. By the connection between the random graph models as

described in Section 1.2 and by known results on the distribution of the minimum degree of G(n, p), Theorem

2 implies that w.h.p. G(n, p) ∈ MPM for every p ≥ lnn+ln lnn+ω(1)
n , improving on the result of Stojaković

and Szabó in [26].

Theorem 3. If G̃ is the random graph process, then w.h.p.

τ(G̃;MHAM) = τ(G̃; δ4).

Theorem 3 settles a conjecture raised in [26]. Moreover, similarly to the above, Theorem 3 improves on

the result of Hefetz et. al. in [16] by implying that w.h.p. G(n, p) ∈MHAM for every p ≥ lnn+3 ln lnn+ω(1)
n .

1.4.1 From Maker-Breaker games to general random graphs

We stress that using some simple observations, all of the above results have implications for the general

framework of random graphs, hence implying that, in a sense, Theorems 1, 2, and 3 in fact partially strengthen

some of the classical results of random graph theory.

Lehman’s Theorem [22] states that G ∈MECk if and only if G admits 2k pairwise edge-disjoint spanning

trees 4. We note that the assertion of Theorem 1 combined with Lehman’s Theorem implies that for fixed k

w.h.p. the hitting time of G̃ for admitting 2k pairwise edge disjoint spanning trees is precisely the time the

process first hits minimum degree 2k. Hence, we recover a result of Palmer and Spencer [23] for even values

of k.

Next, we stress that by using a strategy stealing argument, all of the above results can be transferred from

the Maker-Breaker setting to statements about graph packing. Indeed, let G be a graph and let P be some

4in fact, Lehman stated his theorem only for the case k = 1, but it is straightforward to generalize it to handle every positive

integer k.
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monotone increasing graph property for which we know that G ∈ MP . Let SM be some winning strategy

of Maker for the game (E(G),FP). Breaker, who is the first player under our assumptions, can choose to

steal Maker’s winning strategy as follows. He starts by claiming an arbitrary edge of G. He then pretends

that the game starts with Maker’s first move; he thus assumes the role of the second player. He responds to

each of Maker’s moves according to SM . If at any point during the game, the strategy SM requires Breaker

to claim an edge that he has already claimed, Breaker simply claims some other arbitrary edge which was

not previously claimed by either of the players. Since Breaker is following a winning strategy for (E(G),FP)

and since P is a monotone increasing graph property (that is, extra edges cannot “hurt” Breaker), he will

build a subgraph which satisfies P by the end of the game. On the other hand, we can assume that Maker

follows SM as well. It follows that Maker will also build a subgraph which satisfies P (as his winning strategy

can beat any strategy chosen by Breaker). Clearly, at the end of the game we have found two edge-disjoint

subgraphs, each satisfying P.

For every positive integer k ≥ 1, let PMk and HAMk denote the graph properties of admitting k

pairwise edge-disjoint perfect matchings, and k pairwise edge-disjoint Hamilton cycles respectively. Applying

the aforementioned strategy stealing argument to the assertions of Theorems 2 and 3 implies the following: if

G̃ is the random graph process, then w.h.p. τ(G̃;PM2) = τ(G̃; δ2) and τ(G̃;HAM2) = τ(G̃; δ4). In Section

7 we discuss some generalizations of Theorems 2 and 3 which in turn imply that τ(G̃;PM2k) = τ(G̃; δ2k)

and τ(G̃;HAM2k) = τ(G̃; δ4k) for a fixed integer k ≥ 1. This is in fact a classical theorem (for fixed even

minimum degree) of Bollobás and Frieze [9] for optimal packing of perfect matchings and Hamilton cycles

in sparse random graphs (see also further extensions to random graphs of non-constant minimum degree

[14, 6, 20]).

1.5 Organization

The rest of the paper is organized as follows. In Section 2 we provide some preliminary technical results about

positional games, expanders, and random graphs, which will be needed in the course of our proofs. Section

3 is devoted to the analysis of a general game in which Maker’s goal is to build an expander graph. This will

give us a framework from which we can build on to prove the concrete results on the more natural games

mentioned above. In Section 4 we prove some properties of random graphs and random graph processes that

will be useful in the proofs of our main results. We then move on to provide the full proofs of Theorems

1 and 2 in Section 5. These proofs will rely heavily on the general expander game and the properties of

random graphs and random graph processes which we discussed in the preceding two sections. In Section

6 we move on to the proof of Theorem 3, which is more delicate than the previous two and requires some

more ideas to get the result in full. Lastly, we discuss some further generalizations and sketch their proofs

in Section 7.

2 Preliminaries

In this section we cite some tools which we will make use of in the succeeding sections. First, we will need to

employ bounds on large deviations of random variables. We will mostly use the following well-known bound

on the lower and the upper tails of the Binomial distribution due to Chernoff (see e.g. [1, Appendix A]).

Theorem 2.1 (Chernoff bounds). If X ∼ B(n, p) then
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1. Pr [X < (1− ε)np] < exp(− ε
2np
2 ) for every ε > 0;

2. Pr [X > (1 + ε)np] < exp(−np3 ) for every ε ≥ 1.

It will sometimes be more convenient to use the following bound on the upper tail of the Binomial

distribution.

Lemma 2.2. If X ∼ Bin(n, p) and k ≥ np, then Pr [X ≥ k] ≤ (enp/k)k.

Note that the bound given in Lemma 2.2 is especially useful when k is “much larger” than np.

For the sake of simplicity and clarity of presentation, we do not make a particular effort to optimize the

constants obtained in our proofs. We also omit floor and ceiling signs whenever these are not crucial. Most

of our results are asymptotic in nature and whenever necessary we assume that n is sufficiently large.

2.1 Notation

Our graph-theoretic notation is standard and follows that of [27]. In particular, we use the following. For a

graph G, let V (G) and E(G) denote its sets of vertices and edges respectively, and let e(G) = |E(G)|. For a

set A ⊆ V (G), let EG(A) denote the set of edges of G with both endpoints in A, and let eG(A) = |EG(A)|. For

disjoint sets A,B ⊆ V (G), let EG(A,B) denote the set of edges of G with one endpoint in A and the other in

B, and let eG(A,B) = |EG(A,B)|. For a set S ⊆ V (G), let NG(S) = {u ∈ V (G)\S : ∃v ∈ S, {u, v} ∈ E(G)}
denote the set of neighbors of S in V (G) \ S. For a vertex w ∈ V (G), we abbreviate NG({w}) to NG(w).

For a vertex w ∈ V (G) \ S let dG(w, S) = |{u ∈ S : {u,w} ∈ E(G)}| denote the number of vertices of S

that are adjacent to w in G. We abbreviate dG(w, V \ {w}) to dG(w) which denotes the degree of w in G.

The minimum vertex degree in G is denoted by δ(G). For a set S ⊆ V (G) let G[S] denote the subgraph

of G with vertex set S and edge set EG(S). Let conn(G) and odd(G) respectively denote the number of

connected components and the number of connected components of odd cardinality in G. Lastly, we will

denote by `(G) the length of a longest path in G, where the length of a path is the number of its edges.

2.2 Basic positional games results

The following theorem is a classical result of Erdős and Selfridge [12] which provides a useful sufficient

condition for Breaker’s win in the (X,F) game.

Theorem 2.3 (Erdős and Selfridge [12]). For any hypergraph (X,F), if∑
A∈F

2−|A| <
1

2
,

then Breaker, playing as the first or second player, has a winning strategy for the (X,F) game.

The following simple lemma is useful when a player is trying to ensure expansion of small sets. A similar

lemma appeared in [16].

Lemma 2.4. For every integer k > 0, if H is a graph on n vertices with minimum degree δ(H) ≥ 4k, then

H ∈Mδk . Moreover, Maker can win the minimum degree k game on the edge set of H in at most kn moves.
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Proof. We define a new graph H∗, where H∗ = H if all the degrees in H are even, and otherwise H∗ is

the graph obtained from H by adding a new vertex v∗ and connecting it to every vertex of odd degree

in H. Since all degrees of H∗ are even, it admits an Eulerian orientation
−→
H ∗. For every v ∈ V (H), let

E(v) = {{v, u} ∈ E(H) :
−−−→
(v, u) ∈ E(

−→
H ∗)}. Clearly, |E(v)| ≥

⌈
dH(v)−1

2

⌉
and the sets {E(v)}v∈V (H) are

pairwise disjoint. In every round, if Breaker claims an edge of E(v), then Maker responds by claiming an edge

from E(v), unless he already has k edges incident with v in which case Maker proceeds by claiming an edge

from E(u), where u is some vertex such that Maker did not yet claim k of its incident edges (if no such vertex

exists, then the game was already won by Maker). Note that as
⌈
|E(v)|−1

2

⌉
≥
⌈
dH(v)−2

4

⌉
≥
⌈

4k−2
4

⌉
≥ k,

Maker can always play according to this strategy until he claims k edges incident with v. Disregarding the

orientation, after at most kn moves, the graph spanned by Maker’s edges has minimum degree at least k as

claimed.

2.3 (R, c)-expanders

Let us first define the type of expanders we wish to study.

Definition 2.5. For every c > 0 and every positive integer R we say that a graph G = (V,E) is an (R, c)-

expander if every subset of vertices U ⊆ V of cardinality |U | ≤ R satisfies |NG(U)| ≥ c · |U |. We denote the

graph property of being an (R, c)-expander by XR,c.

Remark 2.6. From the above definition it clearly follows that for every c > 0 and every positive integer R

(both c and R can be functions of the number of vertices of the graph in question), the graph property XR,c
is monotone increasing.

Next, we consider some structural properties of (R, c)-expanders. The following two claims show that the

removal or addition of subsets that satisfy certain properties result in graphs that are still expanders. These

properties will allow us to slightly modify certain expanders without losing their expansion properties.

Claim 2.7. If G = (V,E) is an (R, c)-expander and U ⊆ V is a subset of vertices such that no two vertices

of U have a common neighbor in G, then G[V \ U ] is an (R, c− 1)-expander.

Proof. Let S ⊆ V \U be a set of cardinality |S| ≤ R. It follows by our assumption on U that |NG(v)∩U | ≤ 1

holds for every vertex v ∈ S. Hence |NG[V \U ](S)| ≥ |NG(S)| − |S| ≥ (c− 1)|S|.

Claim 2.8. Let G = (V,E) be a graph, let c > 0, and let R be a positive integer. Let U ⊆ V be a

subset of vertices such that dG(u) ≥ (c − 1) for every u ∈ U , and, moreover, there is no path of length at

most 4 in G whose (possibly identical) endpoints lie in U . If G[V \ U ] is an (R, c)-expander, then G is an

(R, c− 1)-expander.

Proof. Let V ′ = V \ U and let H = G[V ′]. Let S ⊆ V be of cardinality s ≤ R, and let S1 = S ∩ U and

let S2 = S \ S1 with respective cardinalities s1 and s2 = s − s1. Our assumptions on U imply that it is

independent and that for every U ′ ⊆ U we have that |NG(U ′)| ≥ (c − 1)|U ′|. It follows that NG(S1) ⊆
V \ U . Furthermore, NG(S1) can contain at most one vertex from each set {{t} ∪ NH(t)}t∈V ′ , and hence

|NG(S1)∩ (S2∪NH(S2))| ≤ |S2|. It follows that NG(S) ⊇ NH(S2)∪ (NG(S1)\ (NH(S2)∪S2)), which implies

|NG(S)| ≥ c · s2 + (c− 1)s1 − s2 = (c− 1)s as claimed.
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Next, we describe some sufficient conditions for a graph G = (V,E) to be an expander (with appropriate

parameters). Define:

(M1) eG(U) ≤ δ(G)|U |
2(c+1) for every subset of vertices U ⊆ V of cardinality 1 ≤ |U | < (c+ 1)r;

(M2) eG(U,W ) > 0 for every pair of disjoint subsets of vertices U,W ⊆ V of cardinality |U | = |W | = r.

Lemma 2.9. For every c > 0, if G = (V,E) is a graph which satisfies properties M1 and M2 for some

positive integer r ≤ |V |
c+2 , then G is a ( |V |−rc+1 , c)-expander.

Proof. Set R = |V |−r
c+1 ; note that R ≥ r holds by the assumption of the lemma. Assume for the sake

of contradiction that there exists a set S ⊆ V of cardinality |S| ≤ R for which |NG(S)| < c|S|. Let

T = S ∪ NG(S), then |T | < (c + 1)|S|. If 1 ≤ |S| ≤ r, then |T | < (c + 1)r. Moreover, since all edges that

have at least one endpoint in S are spanned by the vertices of T , it follows that eG(T ) ≥ δ(G)|S|
2 > δ(G)|T |

2(c+1) ,

which contradicts property M1. If r < |S| ≤ R, then, since eG(S, V \T ) = 0 and |V \T | > |V |− (c+ 1)|S| ≥
|V | − (c+ 1)R = r, we obtain a contradiction to property M2. This concludes the proof of the lemma.

The reason we study (R, c)-expanders is the fact that they entail some pseudo-random properties from

which (under some conditions on R and c) some of the natural properties that are considered in this paper

follow. We will provide a sufficient conditions for an (R, c)-expander to be k-vertex connected and to admit

a perfect matching. Hence by playing for an (R, c)-expander, Maker will be able to win the two games whose

goals are the aforementioned two properties (each posing different conditions on R and c). The sufficient

condition for a graph to be Hamiltonian, that we will use in the course of the proof, is more delicate than

the conditions for k-vertex connectivity and for admitting a perfect matching, and requires some additional

ideas, but the heart of the proof will still rely on expanders, and the same expander game.

3 An expander game on pseudo-random graphs

The main object of this section is to describe a general Maker-Breaker game which will reside in the core of

all of our proofs. Specifically, the goal of this section is to provide sufficient conditions for G ∈ MXR,c
, or

namely, for a graph G to be Maker’s win when Maker’s goal is to build an (R, c)-expander. Although this

game may seem at first to be an unnatural and artificial game to study, it turns out that this game will lie

in the heart of our proofs of all of the results presented in this paper. Given parameters c > 0, 0 < ε < 1,

K > 0 and a positive integer r ≤ |V |
c+1 , we define the following two properties of a graph H = (V,E) on n′

vertices. These properties, which are closely related to properties M1 and M2, will be needed in the proof

of the main result of this section. Define:

(Q1) eH(U) ≤ εδ(H)|U |
10(c+1) for every subset of vertices U ⊆ V of cardinality 1 ≤ |U | < (c+ 1)r;

(Q2) eH(U,W ) ≥ Kr ln
(
n′

r

)
for every pair of disjoint subsets of vertices U,W ⊆ V of cardinality |U | =

|W | = r.

Remark 3.1. Whenever we will cite property Q2 we will give an explicit expression for K which will not

necessarily be a constant.
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Theorem 3.2. There exists an integer n0 > 0 such that for every graph G′ = (V,E) on n′ ≥ n0 vertices

with minimum degree δ(G′) > 0 and for every choice of parameters 1
2δ(G′) < ε < 1

2 , c > 0, and integer

0 < r ≤ min{ n′

c+2 ,
n′

e30 } for which G′ satisfies properties Q1 and Q2 with K = n′

r(1−2ε) , Maker can win the

(n
′−r
c+1 , c)-expander game on G′, that is, G′ ∈MXR,c

with R = n′−r
c+1 .

Our proof of this theorem will be presented as a series of three lemmata whose composition implies

Theorem 3.2 directly.

Lemma 3.3. There exists an integer n0 > 0 such that for every graph G′ = (V,E) on n′ ≥ n0 vertices with

minimum degree δ(G′) > 0 and for every choice of parameters 1
2δ(G′) < ε < 1

2 and integer 0 < r ≤ n′/e4 for

which G′ satisfies property Q2 with K = n′

r(1−2ε) , the edge set E can be split into two disjoint subsets E =

E1 ∪ E2 such that the graph G1 = (V,E1) has minimum degree δ(G1) ≥ εδ(G′) and the graph G2 = (V,E2)

satisfies property Q2 with K = 3.

Proof. Pick every edge of G′ to be an edge in G1 with probability 2ε independently of all other choices.

The degree in G1 of every vertex v ∈ V is binomially distributed, that is, dG1
(v) ∼ Bin(dG′(v), 2ε) and

thus its median is at least b2εδ(G′)c. By our choice of ε we have that b2εδ(G′)c > εδ(G′) and therefore

Pr [dG1
(v) ≥ εδ(G′)] > 1/2. Since the degrees of every two vertices are positively correlated, by the FKG

inequality (see e.g. [1, Chapter 6]) we have that

Pr [δ(G1) ≥ εδ(G′)] > 2−n
′
.

Let U,W be a pair of disjoint subsets of vertices of cardinality |U | = |W | = r. By our assumption on G′ we

have that eG′(U,W ) ≥
n′ ln

(
n′
r

)
1−2ε . As eG2(U,W ) ∼ Bin(eG′(U,W ), 1−2ε) we have E [eG2(U,W )] ≥ n′ ln

(
n′

r

)
.

Applying Theorem 2.1 we have

Pr

[
eG2(U,W ) < 3r ln

(
n′

r

)]
≤ exp

−(1− 3r
n′

)2
n′ ln

(
n′

r

)
2

 ≤ exp

−n′ ln
(
n′

r

)
3

 .

By applying the union bound over all pairs of disjoint subsets of vertices of cardinality r each, we conclude

that the probability that G2 violates property Q2 with K = 3 is at most

(
n′

r

)(
n′ − r
r

)
exp

−n′ ln
(
n′

r

)
3

 ≤
(
en′

r

)2r

· exp

−n′ ln
(
n′

r

)
3


= exp

2r

(
1 + ln

(
n′

r

))
−
n′ ln

(
n′

r

)
3


≤ exp

−n′ ln
(
n′

r

)
4


< 2−n

′
,

and therefore there exists a partition of G′ as claimed.

The following lemma provides a sufficient condition for a graph G = (V,E) to be a Maker’s win in the

game (E,FM2), that is, the game on the edge set of G in which Maker’s goal is to build a subgraph which
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satisfies the (monotone increasing) property M2. In order to prove this result, we invoke a rather standard

technique of studying a dual game in which the roles of Maker and Breaker are exchanged. Note that in the

dual game, Breaker (which was the original Maker) is the second player.

Lemma 3.4. There exists an integer n0 > 0 such that for every graph G2 = (V,E2) on n′ ≥ n0 vertices and

for every integer 0 < r ≤ n′/e30 for which G2 satisfies property Q2 with K = 3, playing on E2 Maker can

build a subgraph of G2 which satisfies property M2.

Proof. Let G2 be any graph with vertex set V . In order for Maker to build a graph which satisfies property

M2, he can adopt the role of Breaker in the game (E2,L), where L is the family of edge-sets of all induced

bipartite subgraphs of G2 with both parts of size r. Recall that, by property Q2 with K = 3, the size of

every such winning set L ∈ L is at least 3r ln
(
n′

r

)
. It follows that∑

L∈L
2−|L| ≤

∑
U⊆V
|U |=r

∑
W⊆V \U
|W |=r

2−eG2
(U,W )

≤
(
n′

r

)(
n′ − r
r

)
· exp

(
−3r ln

(
n′

r

)
ln 2

)
≤

(
en′

r

)2r

· exp

(
−3r ln

(
n′

r

)
ln 2

)
≤ exp

(
r ·
(

2 ln

(
n′

r

)
+ 2− ln 2 · 3 ln

(
n′

r

)))
<

1

2
.

The assertion of the lemma readily follows from Theorem 2.3.

Lemma 3.5. There exists an integer n0 > 0 such that for every graph G′ = (V,E) on n′ ≥ n0 vertices and

for every choice of parameters 0 < ε < 1, c > 0 and integer 0 < r ≤ n′

c+2 for which G′ satisfies property Q1

and whose edge set can be partitioned into two disjoint sets E = E1 ∪E2 where G1 = (V,E1) is of minimum

degree δ(G1) ≥ ε · δ(G′), and G2 = (V,E2) satisfies Q2 with K = 3, Maker can win the (n
′−r
c+1 , c)-expander

game, that is, G′ ∈MXR,c
with R = n′−r

c+1 .

Proof. Before the game starts, Maker splits the board into two parts, G1 = (V,E1) and G2 = (V,E2) as

indicated in the lemma. Maker then plays two separate games in parallel, one on E1 and the other on E2.

In every turn in which Breaker claims some edge of Ei, for i = 1, 2, Maker responds by claiming an edge of

Ei as well (except for maybe once if Breaker has claimed the last edge of Ei). Let H denote the graph built

by Maker by the end of the game and set H1 = (V,E(H) ∩ E1) and H2 = (V,E(H) ∩ E2).

The game on E1 is played according to Lemma 2.4. Hence, by the end of the game, Maker’s graph H1

will have minimum degree at least δ(H1) ≥ δ(G1)
5 . Since G′ satisfies property Q1 and δ(G1) ≥ εδ(G′) it

follows that, for every U ⊆ V of cardinality 1 ≤ |U | < (c + 1)r, the number of Maker’s edges with both

endpoints in U is eH(U) ≤ eG′(U) ≤ εδ(G′)|U |
10(c+1) ≤

δ(G1)|U |
10(c+1) ≤

δ(H1)|U |
2(c+1) ≤

δ(H)|U |
2(c+1) . Hence, H satisfies property

M1.

The game on E2 is played according to Lemma 3.4. Hence, by the end of the game, Maker will build a

graph H2 which satisfies property M2. By the monotonicity of M2, this property also holds for H. Noting

that H, n′, r and c satisfy the conditions of Lemma 2.9, we deduce that H ∈MXR,c
, that is, Maker’s graph

is an (R, c)-expander as claimed.
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4 Properties of random graphs and random graph processes

We consider the random graph model we are interested in, the random graph process. For every fixed integer

k ≥ 1 we define two functions as follows:

mk =

(
n

2

)
lnn+ (k − 1) ln lnn− ln ln lnn

n
; (5)

Mk =

(
n

2

)
lnn+ (k − 1) ln lnn+ ln ln lnn

n
. (6)

The following lemma (see e.g. [8]) describes a fairly precise behavior of the minimum degree of the random

graph process.

Lemma 4.1. For every fixed integer k ≥ 1, if G̃ is the random graph process, then w.h.p.

mk < τ(G̃; δk) < Mk.

Let G = (V,E) be a graph on n vertices and, for a positive integer t, let

Dt = Dt(G) = {v ∈ V : dG(v) < t}. (7)

Remark 4.2. Let G̃ = {Gi}
(n
2)
i=0 be the random graph process, then Dt(Gi−1) ⊇ Dt(Gi) holds for every

1 ≤ i ≤
(
n
2

)
.

Next, we prove and cite some structural properties of the set Dt(G(n,M)) = Dt(GM ). In order to prove

these results, we resort to the use of G(n, p), where the analysis is much simpler, and then use Claim 1.2 to

transfer the results to the random graph model G(n,M).

Claim 4.3. For every integer t ≤ ln0.9 n, if G̃ = {Gi}
(n
2)
i=0 is the random graph process and M ≥ m1, then

w.h.p. |Dt(GM )| ≤ n0.3.

Proof. Set p = M/
(
n
2

)
and let G ∼ G(n, p). By (5) we have that p > 0.9 lnn/n. Fix a subset U ⊆ V (G)

of cardinality |U | = bn0.3c. We upper bound the probability that every vertex of U has strictly less than

t neighbors outside of U . Let N = |V (G) \ U | = (1 − o(1))n and let u ∈ U be an arbitrary vertex, then

eG(u, V \ U) ∼ Bin(N, p), and therefore

Pr [eG(u, V (G) \ U) < t] ≤
t∑
i=0

(
N

i

)
pi(1− p)N−i

≤
t∑
i=0

(
n

i

)
pi(1− p)n−i

≤
t∑
i=0

exp {i · ln(np)− p(n− i)}

≤ n−0.89

Since the numbers of edges emitting out of U from each vertex of U are independent random variables (each

counting the appearance of edges in a set disjoint of all others), it follows that the probability that every

vertex of U has strictly less than t neighbors outside of U , is at most n−0.89|U |. There are
(
n
|U |
)

subsets of
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this cardinality. Hence, applying the union bound over all of these sets entails that the probability there

exists such a set U is at most(
n

|U |

)
· n−0.89|U | ≤ exp

(
|U | · (1 + ln

n

|U |
− 0.89 lnn)

)
≤ exp (−0.18|U | lnn)) ≤ e−n

0.3

.

By the definition of Dt(G) all its vertices have less than t edges emitting out of it, hence the probability that

|Dt(G)| > n0.3 is at most e−n
0.3

. Applying Claim 1.2 we have that

Pr
[
|Dt(GM )| > n0.3

]
≤ 3
√
M · exp

(
−n0.3

)
< 2
√
n lnn · exp

(
−n0.3

)
= o(1).

This concludes the proof of the claim.

Claim 4.4. For every fixed integer k ≥ 1 and for every integer t ≤ ln0.9 n, if G̃ = {Gi}
(n
2)
i=0 is the random

graph process and M = τ(G̃; δk), then w.h.p G = GM does not contain a non-empty path of length at most

4 such that both of its (possibly identical) endpoints lie in Dt(GM ).

Proof. Clearly, it suffices to consider the case t = ln0.9 n. We will prove the claim for two distinct endpoints

in Dt(GM ), and for paths of length 2 ≤ r ≤ 4 between them, where the other cases are similar (and a little

simpler). By Lemma 4.1 we can assume that mk < τ(G̃; δk) < Mk, and hence it follows by Remark 4.2

that Dt(GM ) ⊆ Dt(Gmk
) := D. Our analysis will consist of two stages. First we show that w.h.p. there

is no path of length at most 4 that connects two vertices of D. Second we show that w.h.p. none of the

edges that were added during the random graph process between time mk and time Mk, that is, the edges

in E(GMk
) \ E(Gmk

), create such a path.

Let G = Gmk
∼ G(n,mk) and let P = (v0, . . . , vr) be a sequence of r + 1 vertices of V (G), where

2 ≤ r ≤ 4. Our first goal is to bound the probability that P forms a path of length r in G such that v0 and

vr are both in D. Denote by AP the event {vi, vi+1} ∈ E(G) for every 0 ≤ i ≤ r − 1, we have

Pr [AP ∧ {v0, vr} ⊆ D] = Pr [AP ] · Pr [{v0, vr} ⊆ D | AP ] .

Denoting N =
(
n
2

)
and recalling (5) we have

Pr [AP ] =

(
N−r
mk−r

)(
N
mk

) < 1.01

(
lnn

n

)r
. (8)

Next, we note that Pr [{v0, vr} ⊆ D | AP ] ≤ Pr [eG({v0, vr}, V \ {v0, vr}) ≤ 2t | AP ]. Conditioning on AP
implies that the two edges {v0, v1} and {vr−1, vr} are present inG. It follows that [eG({v0, vr}, V \ {v0, vr})| AP ]−
2 is distributed according to the hypergeometric distribution with parameters N − r, mk − r, and 2n − 6.
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Putting everything together we conclude that

Pr [{v0, vr} ⊆ D | AP ] ≤ Pr [eG({v0, vr}, V \ {v0, vr})− 2 ≤ 2t− 2 | AP ]

≤
2t−2∑
j=0

(
2n− 6

j

)
·
(
N−r−2n+6
mk−r−j

)(
N−r
mk−r

)
≤ 2t ·

(
2n

2t

)
·
(

mk − r
N −mk + 2t

)2t

·
(
N − r − 2n+ 6

N − r

)mk−r−2t

≤ 2t ·
(

en(mk − r)
t(N −mk + 2t)

)2t

· exp

(
−(mk − r − 2t) · 2n− 6

N − r

)
≤ 2t · exp (−1.9 lnn)

≤ n−1.8.

Hence, applying a union bound argument over all such sequences of r + 1 vertices, we conclude that the

probability there exists a path in G of length 2 ≤ r ≤ 4 connecting two distinct vertices of D is at most∑4
r=2 n

r+1 · 1.01
(

lnn
n

)r · n−1.8 = o(1).

In light of the above, we can assume that after mk steps the random graph process does not admit a

short path connecting two vertices of D. Moreover, by Claim 4.3 we can assume that |D| ≤ n0.3. Now, let

mk < M ′ ≤ Mk, set H = GM ′−1, and let e be the edge added at step M ′ (that is, e = E(GM ′) \ E(H)).

We upper bound the probability that e creates a short path which connects two vertices of D ⊇ Dt(H). We

note that a standard application of the Chernoff bound (Theorem 2.1) in conjunction with Claim 1.2 implies

that w.h.p. the maximum degree of H satisfies ∆(H) ≤ 2 lnn. Let U be the set of vertices at distance at

most 3 from Dt(H). If e closes a short path that connects two vertices of Dt(H), then both endpoints of e

must lie in U . Clearly |U | ≤ |D| ·∆(H)3 ≤ 8n0.3 ln3 n. It follows that the probability that e is chosen within

this set is at most
(|U|2 )
N−M ′ = o(n−1.3). Since Mk −mk = O(n ln ln lnn), applying a union bound argument

over all integral values of mk ≤M ′ ≤Mk, implies that the probability that such an edge is selected is o(1).

This concludes the proof of the claim.

Claim 4.5. For every fixed integer k ≥ 2, if G̃ = {Gi}
(n
2)
i=0 is the random graph process and M = τ(G̃; δk),

then w.h.p. GM = (V,E) is such that eGM
(U) < |U | ln0.8 n for every subset of vertices U ⊆ V of cardinality

1 ≤ |U | ≤ n
ln0.3 n

.

Proof. By Lemma 4.1 we can assume that M < Mk. As the complement of the property at hand is

monotone increasing, it follows by Proposition 1.1 that it suffices to prove that, if p = p(n) ≤ 2 lnn/n and

G ∼ G(n, p), then the probability that there exists a subset U ⊆ V of cardinality 1 ≤ |U | ≤ n
ln0.3 n

such that

eG(U) ≥ |U | ln0.8 n, tends to 0 as n tends to infinity. Fix a subset U of cardinality 1 ≤ u ≤ n · ln−0.3 n, then

eG(U) ∼ Bin(
(
u
2

)
, p). Since u · ln0.8 n ≥

(
u
2

)
· p, we can apply Lemma 2.2 to upper bound the probability

that eG(U) is too large. We can then upper bound the probability of the claim being violated, by applying
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a union bound argument as follows

n·ln−0.3 n∑
u=1

(
n

u

)
Pr
[
eG(U) ≥ u · ln0.8 n

]
≤

n·ln−0.3 n∑
u=1

(en
u

)u
·

(
e
(
u
2

)
p

u · ln0.8 n

)u·ln0.8 n

≤
n·ln−0.3 n∑
u=1

(
eln0.8 n+1 ·

(u
n

)ln0.8 n−1

· (ln0.2 n)ln0.8 n

)u

≤
n·ln−0.3 n∑
u=1

(
4 ·
(u
n

)0.99

· (ln0.2 n)

)u ln0.8 n

≤
n·ln−0.3 n∑
u=1

(
ln−0.09 n

)u ln0.8 n

= o(1),

where the last equality follows from the fact that we are summing a geometric series with a first element

and quotient both being o(1). This concludes the proof of the claim.

Claim 4.6. For every fixed integer k ≥ 1 and for an integer r = n
2 ln0.4 n

, if G̃ = {Gi}
(n
2)
i=0 is the random

graph process and M = τ(G̃; δk), then w.h.p. eGM
(U,W ) ≥ n ln0.1 n for every pair of disjoint subsets

U,W ⊆ V (GM ) of cardinality |U | = |W | = r.

Proof. By Lemma 4.1 we can assume that M > mk. As the property at hand is monotone increasing, it

follows by Proposition 1.1 that it suffices to prove the claim forG ∼ G(n, p) with p ≥ lnn
n . Fix a pair of disjoint

subsets U,W ⊆ V (G) of cardinality r each. Then eG(U,W ) ∼ Bin(r2, p), and thus E [eG(U,W )] ≥ n ln0.2 n
4 .

We upper bound the probability that eG(U,W ) is too small using Theorem 2.1. We can then upper bound

the probability of the claim being violated, by applying a union bound argument as follows(
n

r

)(
n− r
r

)
Pr
[
eG(U,W ) < n ln0.1 n

]
≤

(en
r

)2r

exp

(
−
(
1− 4

ln0.1 n

)2
r2p

2

)

≤ exp

(
r

(
2 + ln lnn− ln0.2 n

10

))
= o(1).

This concludes the proof of the claim.

Finally, we prove that removing vertices of small degree from a random graph with an appropriate number

of edges typically results in a graph on which Maker can win the expander game. In fact, we even show that

Maker can win the game when this graph is thinned substantially (that is, the vast majority of edges are

removed). This stronger property will play a crucial role in the proof of Theorem 3. Our proof will make

use, in particular, of results we have obtained in Claims 4.3, 4.5, 4.6 and in Theorem 3.2.

Lemma 4.7. For every α > 0 and for every fixed integer k ≥ 2, if G̃ = {Gi}
(n
2)
i=0 is the random graph process

and M = τ(G̃; δk), then w.h.p. G′ = (V ′, E′) := GM \ Dln0.9 n(GM ) on n′ vertices contains a spanning

subgraph Ĝ ⊆ G′ with at most 2n′ ln0.97 n′ edges, such that Ĝ ∈ MXR,c
for every 0 < c ≤ ln0.02 n′ and

R ≤ (1− α) n′

c+1 .
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Remark 4.8. As was noted in Remark 2.6, by the monotonicity of XR,c, the above lemma can be used to

deduce that G′ ∈MXR,c
.

Proof. Pick every edge of G′ to be an edge of Ĝ with probability γ = ln−0.03 n, independently of all other

choices. Our goal is to prove that, with positive probability, Ĝ satisfies the conditions of Theorem 3.2, with

parameters

ε = γ and r =
n′

ln0.4 n′
.

Based on typical properties of the random graph process, we can assume that G′ satisfies the following

properties:

1) δ(G′) ≥ ln0.9 n;

2) e(G′) ≤ e(GM ) ≤ e(GMk
) ≤ (1 + o(1))n lnn

2 (Lemma 4.1);

3) |Dln0.9 n(GM )| ≤ n0.3, and therefore n′ ≥ n(1− n−0.7) (Claim 4.3);

4) Every set U ⊆ V ′ of cardinality |U | ≤ (c + 1)r ≤ n
ln0.3 n

satisfies eG′(U) = eGM
(U) ≤ |U | ln0.8 n ≤

|U | ln0.81 n′ (Claim 4.5);

5) Every pair of disjoint subsets U,W ⊆ V ′ of cardinality |U | = |W | = r ≥ n
2 ln0.4 n

satisfies eG′(U,W ) ≥
n ln0.1 n (Claim 4.6).

It follows that our choice of parameters meets the requirements on ε, c and r, made in Theorem 3.2.

We proceed to prove that, with a “not too small” probability, Ĝ satisfies property Q1. First note that

every set U ⊆ V ′ of cardinality |U | ≤ (c + 1)r satisfies eĜ(U) ≤ eG′(U) ≤ |U | ln0.81 n′. The degree in Ĝ

of every vertex v ∈ V ′ is binomially distributed, dĜ(v) ∼ Bin(dG′(v), γ), with median at least bγδ(G′)c.
Therefore Pr

[
dĜ(v) ≥ bγδ(G′)c

]
≥ 1/2. Since δ(G′) ≥ ln0.9 n and since the degrees of every two vertices are

positively correlated, using the FKG inequality (see e.g. [1, Chapter 6]) we have that

Pr
[
δ(Ĝ) ≥ bln0.87 nc

]
≥ Pr

[
δ(Ĝ) ≥ bγδ(G′)c

]
≥ 2−n

′
.

It follows that with probability at least 2−n
′

we have εδ(Ĝ)
10(c+1) > ln0.81 n′, and thus Ĝ satisfies property Q1

with probability at least 2−n
′
.

Next, we prove that, with “very large” probability, Ĝ satisfies property Q2. Fixing a pair of disjoint

sets of vertices U,W ⊆ V ′ of cardinality r each, it clearly follows that eĜ(U,W ) ∼ Bin(eG′(U,W ), γ), and

thus E
[
eĜ(U,W )

]
≥ n ln0.07 n > n′ ln0.07 n′. Since n′

(1−2ε) ln
(
n′

r

)
≤ n′ ln0.05 n′, we can upper bound the

probability that the pair U,W does not satisfy property Q2 with K = n′

r(1−2ε) , using Theorem 2.1 as follows.

Pr
[
eĜ(U,W ) < n′ ln0.05 n′

]
≤ exp

(
− (1− ln−0.02 n′)2n′ ln0.07 n′

2

)
≤ exp

(
−n
′ ln0.07 n′

3

)
.

Applying a simple union bound argument we deduce that the probability that there exists a pair of disjoint

subsets of vertices, of cardinality r each, which does not satisfy property Q2 with K = n′

r(1−2ε) is at most(
n′

r

)
·
(
n′ − r
r

)
· exp

(
−n
′ ln0.07 n′

3

)
≤ exp

(
2r ln

(
en′

r

)
− n′ ln0.07 n′

3

)
≤ exp

(
−n
′ ln0.07 n′

4

)
.
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Finally, note that e(Ĝ) ∼ Bin(e(G′), γ) and thus E
[
e(Ĝ)

]
= (1− o(1))n

′ ln0.97 n′

2 . Hence, using Theorem

2.1 we deduce that

Pr
[
e(Ĝ) > 2n′ ln0.97 n′

]
< exp

(
− (1− o(1))n′ ln0.97 n′

6

)
.

Putting everything together we conclude that exp
(
− (1−o(1))n′ ln0.97 n′

6

)
+ exp

(
−n

′ ln0.07 n′

4

)
< 2−n

′
.

Hence, there exists a subgraph Ĝ ⊆ G′ with at most 2n′ ln0.97 n′ edges which satisfies the conditions of

Theorem 3.2. It follows that Ĝ ∈MXR,c
as claimed.

5 Hitting time of the k-vertex connectivity and perfect matching

games

This short section is devoted to the proofs of Theorems 1 and 2. These two theorems are simple corollaries

of the results presented in the previous sections.

5.1 k-vertex connectivity

As already mentioned in Section 2 we will provide a sufficient condition on R and c such that an (R, c)-

expander will surely be k-vertex connected.

Lemma 5.1. For every positive integer k, if G = (V,E) is an (R, c)-expander such that c ≥ k, and Rc ≥
1
2 (|V |+ k), then G ∈ VCk.

Proof. Assume for the sake of contradiction that there exists some set S ⊆ V of size |S| ≤ k − 1 whose

removal disconnects G. Denote the connected components of G \ S by S1, . . . , St, where t ≥ 2 and 1 ≤
|S1| ≤ . . . ≤ |St|. If |S1| ≤ R, then k − 1 ≥ |S| ≥ |NG(S1)| ≥ c|S1| ≥ c ≥ k, which is clearly a contradiction.

Assume then that |S1| > R. For i ∈ {1, 2}, let Ai ⊆ Si be an arbitrary subset of size R. It follows that

|V | ≥ |S1 ∪ S2 ∪NG(S1) ∪NG(S2)| ≥ |NG(A1) ∪NG(A2)| = |NG(A1)|+ |NG(A2)| − |NG(A1) ∩NG(A2)| ≥
2Rc− |S| ≥ |V |+ 1, which is clearly a contradiction. It follows that G is k-vertex-connected as claimed.

In order to prove Theorem 1 it thus suffices to show that w.h.p. at the moment the random graph process

first reaches minimum degree 2k, Maker has a winning strategy for the (R, c)-expander game for suitably

chosen values of R and c. In doing so we will heavily rely on Theorem 3.2.

Proof of Theorem 1. Fix some positive integer k ≥ 1 and let G̃ = {Gi}
(n
2)
i=0 denote the random graph process.

Set M = τ(G̃; δ2k), let G = GM , Small = Dln0.9 n(G), G′ = G[V \ Small] and denote by n′ the number

of vertices in G′. Setting c = k + 2, and R = n′

k+4 , the conditions of Lemma 4.7 are met, and thus

G′ ∈MX n′
k+4

,k+2
.

Maker’s strategy will consist of splitting the board into F1 = E(G′) and F2 = EG(Small, V \ Small),

and playing the corresponding two games in parallel, that is, in each move Maker will claim an edge of

the board Breaker chose his last edge from (except for possibly his last move in one of the two games).

Playing on the edges of F1, Maker aims to build an ( n′

k+4 , k + 2)-expander. As noted above, Maker has a
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winning strategy for this game. Playing on the edges of F2, Maker follows a simple pairing strategy which

guarantees that, by the end of the game, the graph H which Maker constructs will satisfy dH(v) ≥ bdG(v)/2c
for every v ∈ Small. To achieve this goal, whenever Breaker claims an edge which is incident with some

vertex v ∈ Small, Maker responds by claiming a different edge incident with v if such an edge exists, and

otherwise he claims an arbitrary free edge of F1 ∪ F2. Since the minimum degree in G is 2k, it follows by

Maker’s strategy for the game on F2 and by Claim 4.4, that in Maker’s graph H, the vertices of Small

form an independent set with k edges emitting out of each vertex. Since the graph H ′ = H[V \ Small] is

an ( n′

k+4 , k + 2)-expander, and since (k + 2) · n′

k+4 ≥
1
2 (n + k) holds for every k ≥ 1 by Claim 4.3, Lemma

5.1 implies that H ′ ∈ VCk. Adding to H ′ the vertices of Small with their incident edges clearly keeps the

k-vertex connectivity property, as connecting a new vertex to at least k vertices of a k-vertex connected

graph produces a k-vertex connected graph. This concludes the proof of the theorem.

5.2 Perfect matching

Next, in order to show that expansion entails admitting a perfect matching, we make use of the well-known

Berge-Tutte formula for the size of a maximum matching in a graph (see e.g. [27, Corollary 3.3.7]).

Theorem 5.2 (Berge-Tutte). The maximum number of vertices which are saturated by a matching in a

graph G = (V,E) is minS⊆V {|V |+ |S| − odd(G− S)}.

The following lemma is applicable regardless of the parity of the number of vertices in the graph.

Lemma 5.3. If G = (V,E) is an (R, c)-expander such that c ≥ 2 and (c + 1)R ≤ |V | < 2Rc − 8c, then

G ∈ PM.

Proof. From the conditions on R and c it follows that Rc > |V |/2 and, combined with G being an (R, c)-

expander, this trivially implies that the graphGmust be connected. Setting S = ∅, we have that odd(G−S) =

1 for odd |V |, and that odd(G − S) = 0 for even |V |. By Theorem 5.2 we can thus assume that S 6= ∅.
We will in fact prove that |S| ≥ conn(G− S) holds for every non-empty S ⊆ V . It clearly suffices to prove

this for every ∅ 6= S ⊆ V of cardinality |S| ≤ |V |/2. Let S be such a set, let t = conn(G − S), and let

S1, . . . , St denote the connected components of G− S, where 1 ≤ |S1| ≤ . . . ≤ |St|. Assume first that there

exists a set A ⊆ {1, . . . , t} such that |S|/c <
∣∣⋃

i∈A Si
∣∣ ≤ R. By definition we have NG(

⋃
i∈A Si) ⊆ S.

It follows that |S| ≥ |NG(
⋃
i∈A Si)| ≥ c

∣∣⋃
i∈A Si

∣∣ > |S|, which is clearly a contradiction. Hence, no such

A ⊆ {1, . . . , t} exists. It follows that there must exist some 0 ≤ j∗ ≤ t such that
∑j∗

i=1 |Si| ≤ b|S|/cc
and |Si| > R − |S|/c for every j∗ < i ≤ t. If j∗ ≥ t − 1, then, since |Si| ≥ 1 for every 1 ≤ i ≤ t,

it follows that t ≤
∑t−1
i=1 |Si| + 1 ≤ b|S|/cc + 1 ≤ |S|. Hence, we can assume that j∗ ≤ t − 2. We

split our analysis of this case into two subcases. First, assume that 1 ≤ |S| < Rc
2 or equivalently, that

c(R − |S|/c) > |S|. If R − |S|/c ≤ |Sj∗+1| ≤ R, then, as S ⊇ NG(Sj∗+1) we have that |S| ≥ |NG(Sj∗+1)| ≥
c(R − |S|/c) > |S|, a contradiction. Therefore, in this subcase |Si| > R holds for every j∗ < i ≤ t. Since

j∗ ≤ t − 2, for i ∈ {t − 1, t}, we can choose Ai ⊆ Si to be an arbitrary subset of size R. It follows

that |V | =
∑t
i=1 |Si| + |S| ≥ t − 2 + |St−1 ∪ St ∪ NG(St−1) ∪ NG(St)| ≥ t − 2 + |NG(At−1) ∪ NG(At)| =

t−2+ |NG(At−1)|+ |NG(At)|−|NG(At−1)∩NG(At)| ≥ t−2+2Rc−|S| > |V |+8c+t−2−|S|, which implies

|S| > t+8c−2 > t. This completes the proof of the first subcase. Second, we assume that Rc/2 ≤ |S| ≤ |V |/2;

it follows that |S| > |V |/4. Note that under our assumption on R and c we have that R − |S|/c > 4, and

therefore |Si| ≥ 5 for every j∗ < i ≤ t. Moreover, since |Si| ≥ 1 holds for every 1 ≤ i ≤ j∗, it follows that
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j∗ ≤ |S|/c. Putting everything together we have that |S| > 1
3

∑t
i=1 |Si| ≥

j∗+(t−j∗)(R−|S|/c)
3 ≥ 5t−4j∗

3 , and

therefore t < |S|
5 (3 + 4

c ) ≤ |S|. This concludes the proof of the lemma.

In order to prove Theorem 2 we proceed very similarly to the proof of Theorem 1.

Proof of Theorem 2. Let G̃ = {Gi}
(n
2)
i=0 denote the random graph process. Set M = τ(G̃; δ2), let G = GM ,

Small = Dln0.9 n(G), G′ = G[V \ Small] and denote by n′ the number of vertices in G′. Setting c = 8, and

R = n′

10 , the conditions of Lemma 4.7 are met, and thus G′ ∈MXn′
10

,8
.

Maker’s strategy is quite similar to the one presented in the proof of Theorem 1. He splits the board into

F1 = E(G′) and F2 = EG(Small, V \ Small), and plays the corresponding two games in parallel, that is,

in each move Maker will claim an edge of the board Breaker chose his last edge from (except for possibly his

last move in one of the two games). Playing on the edges of F1, Maker aims to build an (n′/10, 8)-expander.

As noted above, Maker has a winning strategy for this game. We denote the restriction of the graph built by

Maker by the end of the game to the edges of F1 by H1. Playing on the edges of F2, Maker follows a simple

pairing strategy which guarantees that, by the end of the game, the graph H2 which Maker constructs will

satisfy dH2
(v) ≥ bdG(v)/2c for every v ∈ Small. To achieve this goal, whenever Breaker claims an edge

which is incident with some vertex v ∈ Small, Maker responds by claiming a different edge incident with v

if such an edge exists, and otherwise he claims an arbitrary free edge of F1 ∪F2. Recalling Claim 4.4 we can

assume that Small is an independent set in G and that no two vertices in Small share a common neighbor.

As the minimum degree in G is 2, Maker’s graph, H = H1∪H2, will contain at least one edge emitting out of

every vertex in Small, each incident with a different vertex of V \Small. Therefore, there exists a matching

M which covers all vertices of Small. Let T denote the set of vertices of V \ Small which are covered by

M. Again, by Claim 4.4 we can assume that no two vertices in T share a common neighbor (as this would

create a path of length 4 between two vertices in Small). Since, the graph H1 is an (n′/10, 8)-expander, it

follows by Claim 2.7 that the graph H ′ = H1 \ T is an (n′/10, 7)-expander. The values R = n′/10 and c = 7

satisfy the condition of Lemma 5.3, implying that H ′ ∈ PM. LetM′ be some perfect matching of H ′, then

M∪M′ is a perfect matching of H. This concludes the proof of the theorem.

6 Hitting time of the Hamiltonicity game

Our proof of Theorem 3 is fairly similar to the two proofs presented in the previous section. However,

having built an appropriate expander, Maker will need to claim additional edges in order to transform his

expander into a Hamiltonian graph. In order to describe the relevant connection between Hamiltonicity and

(R, c)-expanders, we require the notion of boosters.

Definition 6.1. For every graph G, we say that a non-edge {u, v} /∈ E(G) is a booster with respect to G, if

either G ∪ {u, v} is Hamiltonian or `(G ∪ {u, v}) > `(G). We denote by BG the set of boosters with respect

to G.

The following is a well-known property of (R, 2)-expanders (see e.g. [14]).

Lemma 6.2. If G is a connected non-Hamiltonian (R, 2)-expander, then |BG| ≥ R2/2.
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Our goal is to show that during a game on an appropriate graph G, assuming Maker can build a subgraph

of G which is an (R, c)-expander, he can also claim sufficiently many such boosters, so that his (R, c)-expander

becomes Hamiltonian. In order to do so, we further analyze the structure of the random graph process.

Lemma 6.3. If G̃ = {Gi}
(n
2)
i=0 is the random graph process and M = τ(G̃; δ4), then w.h.p. GM does not

contain a connected non-Hamiltonian (n/5, 2)-expander Γ with at most n ln0.98 n edges such that |E(GM ) ∩
BΓ| ≤ n lnn

100 .

Proof. First we note that any (n/5, 2)-expander must be connected, as each connected component must

be of size at least n/5 + 2n/5 > n/2. Let m4 ≤ M ′ ≤ M4 be an integer, let p = M ′/
(
n
2

)
> lnn

n , and let

G = (V,E) ∼ G(n, p). Our goal is to prove that the probability that G contains a connected non-Hamiltonian

(n/5, 2)-expander subgraph Γ with at most n ln0.98 n edges such that |E∩BΓ| ≤ n lnn
100 is “much smaller” than

the probability that e(G) = M ′. Applying Claim 1.2 for every integer m4 ≤ M ′ ≤ M4 and then summing

over all such integers, will enable us to complete the proof.

Let S denote the set of all labeled non-Hamiltonian (n/5, 2)-expanders on the vertex set V which have at

most n ln0.98 n edges. Fix a graph Γ = (V, F ) ∈ S, then clearly Pr [Γ ⊆ G] = p|F |. Now, let G′ = (V,E \F ) ∼
G(n, p)−F . By definition, every booster with respect to Γ is a non-edge in Γ, hence BΓ is a subset of the

potential pairs of the graph G′. Lemma 6.2 implies that |BΓ| ≥ n2/50, and since |E(G′)∩BΓ| ∼ Bin(|BΓ|, p),
it follows that E [|E(G′) ∩ BΓ|] ≥ n2p

50 > n lnn
50 . Applying Theorem 2.1 we have

Pr

[
|E(G′) ∩ BΓ| ≤

n lnn

100

]
≤ exp

(
−
(
1− 50

100

)2
n2p

100

)
= exp

(
−n

2p

400

)
.

Next, we note that by the independence of appearance of edges in G(n, p), the event Γ ⊆ G and the event

that some booster e with respect to Γ was chosen among the edges of G′, are independent events. It follows

that the probability that G contains a connected non-Hamiltonian (n/5, 2)-expander Γ with m ≤ n ln0.98 n

edges, such that |E ∩ BΓ| ≤ n lnn
100 is at most

((n
2)
m

)
pm · exp

(
−n

2p
400

)
. Applying a union bound argument over

all integers 1 ≤ m ≤ n ln0.98 n we obtain

n ln0.98 n∑
m=1

((n
2

)
m

)
pm · exp

(
−n

2p

400

)

≤
n ln0.98 n∑
m=1

(
en2p

2m

)m
· exp

(
−n

2p

400

)

≤
n ln0.98 n∑
m=1

exp

(
m ·

(
1 + ln

(
n2p

2m

))
− n2p

400

)
≤ exp

(
−n

2p

401

)
.

Using Claim 1.2, the above calculation implies that the same event, with G ∼ G(n,M ′), is upper bounded

by 3
√
M ′ · exp

(
−n

2p
401

)
≤ exp

(−n lnn
402

)
. Taking the union bound over all integral values of m4 ≤ M ′ ≤ M4,

we conclude that the probability there exists such an integer M ′ for which GM ′ violates the claim is at most

(M4 −m4 + 1) · exp
(−n lnn

402

)
≤ n ln ln lnn · exp

(−n lnn
402

)
= o(1).

We are now ready to present the full proof of Theorem 3.
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Proof of Theorem 3. Let G̃ = {Gi}
(n
2)
i=0 denote the random graph process. Set M = τ(G̃; δ4), let G = GM ,

Small = Dln0.9 n(G), G′ = G[V \ Small] and denote by n′ the number of vertices in G′. By Claim 4.3 we

can assume that |Small| ≤ n0.3. Setting c = 3, and R = 9n′

40 , the conditions of Lemma 4.7 are met, and

thus there exists a subgraph Ĝ ⊆ G′ such that Ĝ ∈MX 9n′
40

,3
and e(Ĝ) ≤ 2n′ ln0.97 n′.

Maker’s strategy consists of two phases. Let ei denote the edge selected by Maker in his ith move and

let Hi = (V, {e1, . . . , ei}) denote Maker’s graph immediately after his ith move. Let H ′ denote Maker’s

graph at the end of the first phase and let H denote Maker’s graph at the end of the second phase, that

is, Maker’s final graph. Before the game starts, Maker splits the board E(G) into three parts F1 = E(Ĝ),

F2 = EG(Small, V \Small) and F3 = E(G′ \Ĝ). During the first phase, Maker plays two games in parallel,

one on F1 and the other on F2. For every j ≥ 1, on his jth move of the first phase, Maker claims an edge of

F1∪F2, according to his strategy for each of the two games. If on his jth move Breaker claims an edge of Fi,

for some i ∈ {1, 2}, then Maker claims an edge of Fi as well (unless he has already achieved his goal in the

game on Fi). If Breaker claims an edge of F3, then Maker claims an edge of F1∪F2 which brings him closer to

his goal in the corresponding game. Playing on the edge set of F1, Maker aims to build a (9n′/40, 3)-expander

H ′1. As noted above, Maker has a winning strategy for this game. Moreover, since |F1| ≤ 2n′ ln0.97 n′, Maker

can build such an expander within at most t1,1 := n′ ln0.97 n′ moves. Playing on the edges of F2, Maker

follows a simple pairing strategy which guarantees that, by the end of the game, the graph H ′2 which Maker

constructs, will satisfy dH′2(v) ≥ 2 for every v ∈ Small. For every edge which is incident with some vertex

v ∈ Small that Breaker claims, Maker responds by claiming a different edge incident with v. Note that if

Maker’s current graph already contains two edges incident with v he can simply claim another free edge of

F1∪F2 which brings him closer to his goal in the corresponding game. Hence, the number of moves required

for Maker to reach his goal in the game on F2 is at most t1,2 := 2|Small| ≤ 2n0.3. It follows by Claim 4.4

that Small is an independent set and that no two edges emitting from Small are incident with the same

vertex of V \ Small. Hence, Maker’s graph H ′2, satisfies NH′2(U ′) ≥ 2|U ′| for every U ′ ⊆ Small. Applying

Claim 2.8 and noting that 9n′/40 ≥ n/5, it follows that H ′ = H ′1 ∪ H ′2 is an (n/5, 2)-expander. Clearly,

Maker’s final graph H is an (n/5, 2)-expander as well. A crucial point to keep in mind is that the number

of moves required for Maker to construct his (n/5, 2)-expander H ′, is t1 = t1,1 + t1,2 = o(n ln0.98 n).

After having completed the construction of H ′, Maker proceeds to the second phase of his strategy. Let

t2 ≤ n denote the number of moves Maker plays during the second phase. For every t1 < j ≤ t1 + t2, on

his jth move, Maker claims an edge of G which is a booster with respect to Hj−1. This is possible since,

throughout the game Breaker claims at most t1 + t2 ≤ t1 + n edges of G, but by Lemma 6.3, w.h.p. either

Hj−1 is Hamiltonian or it has at least n lnn/100 > t1 + n boosters among the edges of G. It follows by the

definition of a booster that either Hj is Hamiltonian or `(Hj) > `(Hj−1). Repeating the same argument

t2 ≤ n times, we conclude that H is Hamiltonian as claimed.

7 Remarks on possible generalizations

We note that, by using a slight modification of our proofs, Theorems 2 and 3 can in fact be extended. Recall

that for every positive integer k ≥ 1, PMk and HAMk denote the graph properties of admitting k pairwise

edge-disjoint perfect matchings, and k pairwise edge-disjoint Hamilton cycles respectively.
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Theorem 4. For every fixed integer k ≥ 1, if G̃ is the random graph process, then w.h.p.

τ(G̃;MPMk) = τ(G̃; δ2k).

Theorem 5. For every fixed integer k ≥ 1, if G̃ is the random graph process, then w.h.p.

τ(G̃;MHAMk) = τ(G̃; δ4k).

Theorem 5 can be viewed as a Combinatorial game analog of the classical result of Bollobás and Frieze [9]

who proved that w.h.p. τ(G̃;HAMk) = τ(G̃; δ2k) (see also [14] for an extension to non-constant minimum

degree in the G(n, p) model). Moreover, as noted in Subsection 1.4.1, Theorem 5 entails this result of Bollobás

and Frieze when k is even.

We now sketch how the proof of Theorem 3 can be adapted so as to entail Theorem 5. Similarly, the

proof of Theorem 4 can be obtained using appropriate modifications to the proof of Theorem 2, but as this

case is simpler, we omit the details.

It suffices to prove that when removing all vertices of degree at most ln0.9 n from the random graph

G(n,M), where M = τ(G̃; δ4k), playing on this subgraph G′ on n′ vertices, w.h.p. Maker can quickly (that

is, within o(n′ lnn′) moves) build a (9n′/40k, 3k)-expanderH ′ for which the property M2 with r = n′/ ln0.4 n′

holds. Moreover, at the same time, Maker can ensure that the minimum degree of his graph will be at least

2k. After the removal of 0 ≤ i ≤ k−1 edge-disjoint Hamilton cycles from the original graph we have removed

a 2i-regular graph from H ′ and are left with a graph Ĥi (which is spanned by the vertices which are not in

Small) for which |NĤi
(U)| ≥ 3k|U | − 2i|U | ≥ (k+ 2)|U | for every U ⊆ V (H ′) of cardinality |U | ≤ 9n′/40k.

To complete the proof it is left to note that the choice of the parameter r guarantees that between sets of

linear size there is a super-linear number of edges. It is not hard to see that adding back the vertices of

Small, each of which is incident with at least 2k − 2i ≥ 2 edges, results in a connected (n/5, 2)-expander.

This graph has more boosters than the number of moves played so far. It follows that Breaker could not

have claimed all of them. Maker can thus continue playing for another Hamilton cycle using the boosters

left in the graph. As there is a super-linear number of boosters and Breaker can claim at most n of them

per Hamilton cycle, Maker can keep playing this way until he completely saturates his vertices of minimum

degree.
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