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Abstract

Let P be a monotone increasing graph property, let G = (V,E) be a
graph, and let q be a positive integer. In this paper, we study the (1 : q)
Maker-Breaker game, played on the edges of G, in which Maker’s goal is
to build a graph that satisfies the property P . It is clear that in order for
Maker to have a chance of winning, G itself must satisfy P . We prove that
if G satisfies P in some strong sense, that is, if one has to delete sufficiently
many edges from G in order to obtain a graph that does not satisfy P , then
Maker has a winning strategy for this game. We also consider a different
notion of satisfying some property in a strong sense, which is motivated by
a problem of Duffus,  Luczak and Rödl [6].

1 Introduction

Let X be a finite set and let F ⊆ 2X be a family of subsets. In the (p : q)
Maker-Breaker game (X,F), two players, called Maker and Breaker, take turns
in claiming previously unclaimed elements of X, with Maker going first. The set
X is called the “board” of the game and the members of F are referred to as
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the “winning sets”. Maker claims p board elements per turn, whereas Breaker
claims q. The game ends when every board element has been claimed by some
player. Maker wins the game if he occupies all elements of some winning set;
otherwise Breaker wins. We say that a (p : q) game (X,F) is a Maker’s win
if Maker has a strategy that ensures his win in this game against any strategy
of Breaker, otherwise the game is a Breaker’s win. Note that p, q,X, and F
determine whether the game is a Maker’s win or a Breaker’s win.

In this paper we are interested in the following family of Maker-Breaker games.
Let P be a monotone increasing graph property, let G = (V,E) be a graph,
and let q be a positive integer. In the (1 : q) Maker-Breaker game (E,FP ),
Maker’s goal is to build a subgraph of G that satisfies the property P , that is,
FP = {E ′ ⊆ E : G[E ′] ∈ P}. We are interested in characteristics of the graph
G which guarantee that the (1 : q) game (E,FP ) is a Maker’s win. Since P is a
monotone increasing property, it is clear that Maker will lose the game (E,FP )
if G /∈ P . On the other hand, it seems plausible that if G satisfies P in a
“sufficiently robust” manner, then Maker should be able to retain some of this
initial advantage and win the game. This notion of “robustness” is made precise
in the following definition:

Definition 1.1 Let ε > 0, let P be a monotone increasing graph property, and
let G = (V,E) be a graph with m edges. G is said to be ε-robust with respect to
P if one has to delete at least εm edges from G in order to obtain a graph that
does not satisfy P .

Remark 1.2 A graph G with m edges is ε-robust with respect to a monotone
increasing property P if and only if G is ε-far from satisfying the (monotone
decreasing) complement property P̄ (that is, one has to delete at least εm edges
from G in order to obtain a graph that does satisfy P̄ ).

We prove the following general result.

Theorem 1.3 Let ε > 0, let P be a monotone increasing graph property, and let
G = (V,E) be a graph with n vertices and m = Θ(n2) edges. If G is ε-robust with
respect to P and n is sufficiently large, then there exist positive constants c and
α = α(ε, P ), such that Maker has a winning strategy for the (1 : q) game (E,FP )
for every q ≤ cnα.

The bound on q given in Theorem 1.3 is clearly best possible up to the value of
α. For some properties, such as the property PH of admitting a copy of H, the
value of α obtained in the proof of Theorem 1.3, is best possible as well. That
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is, one can determine the largest value of q for which the (1 : q) game (E,FPH
)

is a Maker’s win, up to a multiplicative constant factor (we discuss this fact in
more detail in Section 4). For general properties, however, this is not the case.
Indeed, for the special case in which P is the property of being not-r-colorable,
we prove the following stronger result:

Theorem 1.4 Let r be a positive integer and let P (r) be the property of being
not-r-colorable (that is, of having chromatic number at least r + 1). Let ε > 0
and let G = (V,E) be a graph with n vertices and m edges, where n is sufficiently
large. If G is ε-robust with respect to P (r), then Maker has a winning strategy
for the (1 : q) game (E,FP (r)), for every q ≤ cε2m

n log r
, where c > 0 is an appropriate

constant.

The bound on q given in Theorem 1.4 is not far from being tight, at least for
fixed values of r. This is discussed further in the final section.

A different notion of “robustness” was considered by Duffus,  Luczak and Rödl
in [6]. They study the (1 : q) Maker-Breaker (E,FP (r)) game, where P (r) is the
property of being not-r-colorable, and G is a graph on n vertices with chromatic
number χ. Duffus,  Luczak and Rödl asked how large should χ be in order to
ensure that this game is a Maker’s win. They conjectured that this value of χ is
independent of n. We prove the following weaker result.

Theorem 1.5 Let q and r be positive integers. There exists a constant c = c(q, r)
such that, if G is a graph on n vertices and χ(G) ≥ c log n, then Maker has a
winning strategy for the (1 : q) game (E,FP (r)).

In fact Duffus,  Luczak and Rödl consider the somewhat different setting, in which
G is a hypergraph, and the players claim vertices of G. However, they mention
that already the case where G is a graph and q = r = 2 is open. In the special
case where G = (V,E) is a graph, they consider the game (V,FP (r)) rather than
(E,FP (r)) (that is, the players claim vertices and not edges). We however feel
that, for graphs, the edge version is the more natural one. Still, the result stated
in Theorem 1.5, holds for the vertex version as well.

Note that for q = 1 one can easily obtain a stronger result than the one ensured
by Theorem 1.5, by using a strategy stealing argument. Indeed, let G be a
graph on n vertices satisfying χ(G) > r2. Let GM and GB = G \GM denote the
subgraphs of G, built by Maker and Breaker respectively during the game (played
according to some strategies). Clearly χ(GM)χ(G \ GM) ≥ χ(G). Hence, either
χ(GM) > r or χ(GB) > r. Assume for the sake of contradiction that no strategy
of Maker guarantees χ(GM) > r. It follows from the above, that there exists a
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strategy SB of Breaker, that ensures χ(GB) > r, regardless of Maker’s strategy.
However, Maker can “steal” SB, that is, he can claim an arbitrary first edge and
then play according to SB, pretending to be the second player (whenever he is
supposed to claim an edge which is already his, he claims an arbitrary free edge).
It follows by the definition of SB that χ(GM) > r contrary to our assumption.
Note that strategy stealing is a purely existential argument; we do not know
of any explicit strategy for Maker, that ensures his win in the game with these
parameters. On the other hand, Theorem 1.5 gives the currently best bound for
any q ≥ 2 and r ≥ 2.

One can apply the Duffus,  Luczak and Rödl notion of robustness to other graph
properties besides the property of being not-r-colorable. Consider the property
Pk of being k-edge-connected. Is there a function f : N × N → N, such that for
every f(k, q)-edge-connected graph G = (V,E), Maker has a winning strategy
for the (1 : q) game (E,FPk

)? For q = 1 the answer is yes. Indeed, a classical
theorem of Nash-Williams [12] and of Tutte [13] asserts that 4k-edge-connectivity
ensures the existence of 2k pairwise edge disjoint spanning trees. These trees,
in turn, ensure Maker’s win by the classical theorem of Lehman [11]. Hence,
f(k, 1) = 4k suffices for every k ∈ N. For q ≥ 2 and relatively small values of k,
the answer is no. Indeed, consider a complete bipartite graph G = (A ∪ B,E),
where |A| = c log n and |B| = n − c log n, for an appropriate constant c > 0.
By using a Box-Game strategy (see [5]), we conclude that Breaker can isolate
some vertex of B and thus win the game. For “large” values of k we prove the
following:

Theorem 1.6 Let G = (V,E) be a graph on n vertices, and let q ≥ 2 and
k = k(n) ≥ log2 n be integers. If G is (100kq log2 q)-edge-connected, then Maker
has a winning strategy for the (1 : q) game (E,FPk

).

There is a striking relation between the theory of Positional Games and the theory
of Random Graphs, known as the Erdős paradigm. Roughly speaking, it asserts
that, in some games, playing randomly and playing according to an optimal
strategy yields the same outcome. Theorem 1.6 is an example of this paradigm.
It asserts, in particular, that if G = (V,E) is (c log2 |V |)-edge-connected for an
appropriate constant c > 0, then if Maker follows his optimal strategy, he will
win the (1 : 2) game (E,FP1), (that is, will succeed to construct a connected
graph), regardless of Breaker’s strategy. If on the other hand both players play
randomly, then the graph built by Maker can be viewed as a random subgraph of
G with |E|/3 edges. The fact that such a graph is a.s. connected follows from a
result of [1]. The aforementioned assumption on edge connectivity of G, is easily
seen to be tight for the random game, up to the value of c.
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1.1 Notation and preliminaries

For the sake of simplicity and clarity of presentation, we do not make a par-
ticular effort to optimize the constants obtained in our proofs. We also omit
floor and ceiling signs whenever these are not crucial. Most of our results are
asymptotic in nature and whenever necessary we assume that n is sufficiently
large. Throughout the paper, log stands for the natural logarithm, unless stated
otherwise. Our graph-theoretic notation is standard and follows that of [14]. In
particular, we use the following.

For a graph G, let V (G) and E(G) denote its sets of vertices and edges respec-
tively, and put v(G) = |V (G)| and e(G) = |E(G)|. For a set A ⊆ V (G), let EG(A)
denote the set of edges of G with both endpoints in A, and let eG(A) = |EG(A)|.
For disjoint sets A,B ⊆ V (G), let EG(A,B) denote the set of edges of G with
one endpoint in A and one endpoint in B, and let eG(A,B) = |EG(A,B)|. Some-
times, if there is no risk of confusion, we discard the subscript G in the above
notation. For a set S ⊂ V (G), let S̄ = V (G) \ S. Let (S, S̄) denote the edge-cut
that separates S from S̄, that is, (S, S̄) = EG(S, S̄). For a set S ⊆ V (G), let G[S]
denote the subgraph of G, induced on the vertices of S. For a set E ′ ⊆ E(G), let
G[E ′] denote the subgraph of G, spanned by the edges of E ′. For a graph H let

m2(H) := max
{
e(G)−1
v(G)−2

: G ⊆ H, v(G) ≥ 3
}

denote its 2-density. Let G = (V,E)

be a graph with m edges, and let 0 ≤ t ≤ m be an integer. The random graph
G(t) is the graph obtained from G by randomly deleting m − t edges from G
uniformly amongst all elements of

(
E
m−t

)
. For positive integers r and k, and for a

fixed graph H, let P (r), Pk and PH denote the property of being not-r-colorable,
the property of being k-edge-connected, and the property of admitting a copy of
H, respectively.

The following fundamental theorem, due to Beck [3], is a useful sufficient condi-
tion for Breaker’s win in the (p : q) game (X,F).

Theorem 1.7 Let X be a finite set and let F ⊆ 2X . If
∑

B∈F(1+q)−|B|/p < 1
1+q

,

then Breaker (as first or second player) has a winning strategy for the (p : q) game
(X,F).

The rest of the paper is organized as follows: in Section 2 we prove Theorems 1.3
and 1.4, and in Section 3 we prove Theorems 1.5 and 1.6. Finally, in Section 4
we present some open problems.
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2 Monotone properties

Proof of Theorem 1.3: Maker’s strategy is to build a graph which contains a
relatively small subgraph that satisfies P . Since P is monotone increasing, this
will ensure his win. The existence of such a subgraph is guaranteed by the main
result of [2]:

Theorem 2.1 Let ε > 0 and let P be a monotone increasing property. Let G be
a graph with n vertices and Θ(n2) edges, which is ε-robust with respect to P . Then
there exists a graph H on h = h(ε, P ) vertices that satisfies P , and a constant
γ = γ(ε, P ) > 0, such that G contains at least γnh copies of H.

Remark 2.2 In [2], this result is stated in terms of monotone decreasing proper-
ties and ε-farness. The statement of Theorem 2.1 as it appears here, is obtained
via the equivalence indicated in Remark 1.2.

If there exists a forest F that satisfies P , then Maker wins regardless of his
strategy, for every sufficiently large n and q = o(n). Indeed, Maker’s graph will
have ω(n) edges, and will thus contain every fixed forest. Hence, we assume that
P contains no forests. Let H and γ be as in Theorem 2.1; by the above we can
assume that H contains a cycle. We will prove that Maker can claim a copy of
H in G. In order to do so, we need the following lemma:

Lemma 2.3 Let G = (V,E) be a graph with n vertices and m ≥ c1n
2 edges,

where c1 > 0 is a constant. Let H be a fixed graph on h vertices that contains
a cycle, and let 0 < γ < 1 be a constant. Assume that G contains at least γnh

copies of H. Then, there exist constants c2 > 0 and 0 < δ < 1 such that with
probability at least 2/3, a random graph G(t) with t = c2mn

−1/m2(H) edges is such
that every subgraph of it with at least (1− δ)t edges contains a copy of H.

The proof of Lemma 2.3 is a straightforward adaptation of the proof of a lemma
of Bednarska and  Luczak (see Lemma 4 in [4]), where a similar result is proved
for the special case G = Kn. For the sake of completeness we include a short
sketch of the proof.

Proof We will use the following fact which can be proved through standard
methods: for t′ := t/2, there exists a constant c′ > 0 such that Pr(H 6⊆ G(t′)) ≤
e−c

′t.

Let 0 < δ < 1/2 be a constant, small enough to satisfy δ− δ log δ < c′. We count
pairs (F, F ′) such that F is a subgraph of G with t edges, and F ′ is a subgraph
of F with (1− δ)t ≥ t′ edges that does not contain a copy of H. Counting from
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the view point of F ′ and using the above fact, we conclude that the number of
such pairs is at most

e−c
′t

(
m

(1− δ)t

)(
m− (1− δ)t

δt

)
.

Hence, we conclude that the number of such pairs is at most(
m

t

)(
t

δt

)
e−c

′t ≤ (e/δ)δt e−c
′t

(
m

t

)
≤ 1

3

(
m

t

)
,

where the last inequality holds for sufficiently large n. It follows that the proba-
bility that G(t) contains a subgraph on (1− δ)t vertices which does not contain
a copy of H is at most 1/3, as claimed. 2

We are now ready to describe Maker’s strategy. Let c2 > 0 and 0 < δ < 1 be the
constants whose existence is guaranteed by Lemma 2.3, and let q = δ

2c2
n1/m2(H)−

1. In the first t := δm/(2q + 2) = c2mn
−1/m2(H) rounds, Maker plays randomly,

that is, before the game starts Maker draws uniformly at random t edges of G.
Let {ei}ti=1 be an arbitrary ordering of the chosen edges; these edges are kept
secret from Breaker until they are claimed. In his ith move, for 1 ≤ i ≤ t, Maker
claims the edge ei. If ei has been previously claimed by him or by Breaker, then
he claims an arbitrary free edge. If ei is claimed by Breaker, then it is declared
a failure. In his ith move, for i > t, Maker claims an arbitrary free edge.

Denote the aforementioned strategy of Maker by SM , and let SB be an arbitrary
fixed strategy of Breaker. We claim that if Maker follows SM and Breaker follows
SB, then Maker wins with positive probability. First we prove the following
lemma.

Lemma 2.4 With probability at least 1/2 there are at most δt failures.

Proof During the first t rounds, both players claim together at most t(q + 1) =
δm/2 edges. It follows that, for every 1 ≤ i ≤ t, the probability that ei is a failure
is at most δ/2. Let X be the random variable that counts the number of failures,
then E(X) ≤ δt/2. It follows by Markov’s inequality that Pr(X ≥ δt) ≤ 1/2. 2

We are now ready to prove our claim. Let Mt denote the graph built by Maker
during the first t rounds and let M̃t := Mt ∩ {e1, . . . , et}. The graph M̃t can
be viewed as a random graph G(t) from which an adversary has removed some
edges, namely, all the edges that were declared a failure. By Lemma 2.4, with
probability at least 1/2 there are at most δt failures, that is, there are at least
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(1 − δ)t edges in M̃t. Assuming e(M̃t) ≥ (1 − δ)t, it follows by Lemma 2.3 that
M̃t contains a copy of H with probability at least 2/3. Thus, M̃t contains a copy
of H with probability at least 1/6.

Hence, with positive probability, Maker has won the game. Since this is a finite
perfect information game with no chance moves, it follows that there exists a de-
terministic winning strategy for Maker to win this game, assuming Breaker follows
SB. However, since SB was arbitrary, this holds for any strategy of Breaker. It
follows that the game is a Maker’s win as claimed.

2

Proof of Theorem 1.4:

Maker plays as follows. Let δ = ε/4. In the first t := δm/(q + 1) rounds,
Maker plays randomly, that is, before the game starts Maker draws uniformly at
random t edges of G. Let {ei}ti=1 be an arbitrary ordering of the chosen edges;
these edges are kept secret from Breaker until they are claimed. In his ith move,
for 1 ≤ i ≤ t, Maker claims the edge ei. If ei has been previously claimed by him
or by Breaker, then he claims an arbitrary free edge. If ei is claimed by Breaker,
then it is declared a failure. In his ith move, for i > t, Maker claims an arbitrary
free edge.

Denote the aforementioned strategy of Maker by SM , and let SB be an arbitrary
fixed strategy of Breaker. We claim that if Maker follows SM and Breaker follows
SB, then Maker wins with positive probability. First we prove two lemmas.

Lemma 2.5 Let G = (V,E) be as in Theorem 1.4. Let γ = δ/(q + 1), and let
R ⊆ E be a set of size γm, drawn uniformly at random among all such sets.
Then, with probability at least 2/3, GR := (V,R) is ε/2-robust with respect to
being not-r-colorable, that is, one has to delete at least εγm/2 edges from GR in
order to obtain an r-colorable graph.

Proof Let V = V1 ∪ . . . ∪ Vr be an arbitrary fixed partition of V into r parts.
Since G is ε-robust with respect to being not-r-colorable, it follows that f :=∑r

i=1 eG(Vi) ≥ εm. Let Y =
∑r

i=1 eGR
(Vi), then Y is a hypergeometric random

variable with parameters m, f and γm; in particular, E(Y ) = γf ≥ εγm. It
follows by standard bounds on the tail of the hypergeometric distribution (see
e.g. [8]) that

Pr(Y ≤ εγm/2) ≤ Pr(Y ≤ E(Y )/2)

≤ e−εγm/8

≤ 1

3
r−n,
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where the last inequality follows by the upper bound on q, assumed in Theo-
rem 1.4. Since there are at most rn such partitions, the result follows by a union
bound argument. 2

Lemma 2.6 The probability that there are at least εδm/(2q + 2) failures is at
most 1/2.

Proof During the first t rounds, both players claim together at most t(q + 1) =
δm edges. It follows that, for every 1 ≤ i ≤ t, the probability that ei is a
failure is at most δ. Let X be the random variable that counts the number of
failures, then E(X) ≤ δt = δ2m/(q + 1). It follows by Markov’s inequality that
Pr(X ≥ εδm/(2q + 2)) ≤ 1/2. 2

We are now ready to prove our claim. Let Mt denote the graph built by Maker
during the first t rounds and let M̃t := Mt ∩ {e1, . . . , et}. The graph M̃t can
be viewed as a random graph G(t) from which an adversary has removed some
edges, namely, all the edges that were declared a failure. It follows by Lemma 2.5,
that the probability that one has to delete at least εδm/(2q+ 2) edges from G(t)
in order to obtain an r-colorable graph is at least 2/3. However, by Lemma 2.6,
with probability at least 1/2, a smaller number of edges were removed from G(t)
to obtain M̃t. Thus, M̃t is not r-colorable with probability at least 1/6.

Hence, with positive probability, Maker has won the game. Since this is a finite
perfect information game with no chance moves, it follows that there exists a de-
terministic winning strategy for Maker to win this game, assuming Breaker follows
SB. However, since SB was arbitrary, this holds for any strategy of Breaker. It
follows that the game is a Maker’s win as claimed. 2

3 Chromatic number and edge connectivity

Proof of Theorem 1.5:

We first prove a few simple but useful facts.

Proposition 3.1 Let q ≥ 1 and r ≥ 2 be integers and let G = (V,E) be a graph
on n vertices, where n is sufficiently large. Each of the following is a sufficient
condition for Maker’s win in the (1 : q) game (E,FP (r)).

(a) Maker can win the same game on some subgraph of G.

(b) G contains a clique of size 1000qr log r.
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(c) α(G) ≤ n/(10qr log r).

Proof

(a) Let H be a subgraph of G on which Maker can win the (1 : q) game
(E(H),FP (r)). Let SH be an arbitrary winning strategy of Maker in this
game. When playing the (1 : q) game (E,FP (r)), Maker follows SH while
ignoring E \E(H). That is, if in some move Breaker claims q′ < q edges of
E(H), then Maker (in his mind) gives Breaker q−q′ additional free edges of
E(H), and then plays according to SH . Clearly, by the time every edge of
E(H) is claimed, Maker has built a non-r-colorable subgraph of H, which
is also a non-r-colorable subgraph of G.

(b) Let s = 1000qr log r and let H be a copy of Ks in G. It was proved in [7] that
if q ≤ `

1000r log r
, then playing a (1 : q) game on the edge set of K`, Maker

can build a graph with chromatic number at least r + 1. The claim now
follows by condition (a) of this proposition.

(c) Let s = 10qr log r, and assume that α(G) ≤ n/s. Maker’s goal is to build
a graph that does not admit an independent set of size n/r, and so, in
particular, is not r-colorable. Let A ⊆ V be an arbitrary set of size n/r.
By our assumption α(G[A]) ≤ n/s. It follows by Turán’s Theorem that
e(G[A]) ≥ 4.5qn log r/r. Let IG denote the family of edge-sets of all induced
subgraphs of G on n/r vertices. It is clear that if Breaker can win the (q : 1)
game (E, IG), then Maker can win the (1 : q) game (E,FP (r)) by ensuring
that the independence number of his graph is strictly smaller than n/r. In
order to prove that Breaker can win (E, IG), we apply Theorem 1.7. We
have

∑
B∈IG

2−|B|/q ≤
(
n

n/r

)
2−4.5n log r/r

≤ (er)n/re−3n log r/r

≤
(
e1−2 log r

)n/r
= o(1),

where the last equality holds since r ≥ 2.

2

We are now ready to prove Theorem 1.5. We assume r ≥ 2 as the assertion of
the theorem is trivial for r = 1.
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Let a = 10qr log r and let k = k(q, r) be the smallest positive integer such that
for every graph G on n ≥ k vertices, satisfying α(G) ≤ n/a, Maker has a winning
strategy for the (1 : q) game (E(G),FP (r)) (the existence of such an integer k is
guaranteed by part (c) of Proposition 3.1). Let b = a

a−1
and let n0 be the largest

integer satisfying n0 ≤ k + logb n0. For every i ≥ 0, let ni = n0b
i.

Claim 3.2 Let i ≥ 0 be an integer, and let G be a graph on ni vertices such that
χ(G) ≥ k + logb ni. Then there exists a subgraph G∗ ⊆ G such that v(G∗) ≥ k
and α(G∗) ≤ v(G∗)/a.

Proof We proceed by induction on i. The claim clearly holds for i = 0, as then
we have v(G) = n0 ≤ k + logb n0 ≤ χ(G). It follows that G is a complete graph
and thus α(G) = 1. Hence, since n0 ≥ k ≥ a, we conclude that G∗ := G satisfies
the assertion of the claim. Next, let G be a graph on ni vertices, for some i ≥ 1,
such that χ(G) ≥ k+logb ni. If α(G) ≤ ni/a, then G∗ := G satisfies the assertion
of the claim. Otherwise, let I ⊆ V (G) be an arbitrary independent set of size
ni/a, and let G′ = G[V (G) \ I]. Note that v(G′) = ni − ni/a = nib

−1 = ni−1

and χ(G′) ≥ χ(G) − 1 ≥ k + logb ni − logb b = k + logb ni−1. Hence, by the
induction hypothesis, there exists a subgraph G∗ ⊆ G′ ⊆ G such that v(G∗) ≥ k
and α(G∗) ≤ v(G∗)/a. 2

Let G be a graph on n > n0 vertices, such that χ(G) ≥ k + logb n + 1. Let i be
the integer for which ni < n ≤ ni+1. Let G′ be the graph obtained from G by
adding ni+1 − n isolated vertices. Note that v(G′) = ni+1 and χ(G′) = χ(G) ≥
k + logb ni+1. It follows by Claim 3.2 that there exists a subgraph G∗ ⊆ G′ such
that v(G∗) ≥ k and α(G∗) ≤ v(G∗)/a. Hence, by the choice of k, it follows that
Maker has a winning strategy for the (1 : q) game (E(G∗),FP (r)). By part (a)
of Proposition 3.1 we conclude that Maker also wins this game when played on
G′. Since G′ \ G consists of isolated vertices, it follows that the (1 : q) game
(E(G),FP (r)) is a Maker’s win as claimed.

2

Proof of Theorem 1.6:

We will make use of the following theorem of Karger [10]:

Theorem 3.3 Let G = (V,E) be a graph on n vertices, which is r-edge-connected.
Then, for every t ≥ 1, the number of cuts of size at most rt in G is at most cn2t

for some positive constant c.

Consider the following auxiliary Maker-Breaker game (E,F), which we refer to
as the Cut Game. Two players, called CutMaker and CutBreaker, take turns in
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claiming free edges of G = (V,E). CutBreaker, who is the first player, claims 1
edge per turn, whereas CutMaker claims q edges. The family F consists of all
edge-sets L ⊆ E, for which there exists a cut (S, S̄) of G such that L ⊆ E(S, S̄)
and |L| = e(S, S̄)−k+ 1. CutMaker wins the game if he claims all edges of some
element of F ; otherwise CutBreaker wins. It is easy to see that the (1 : q) game
(E,FPk

) is a Maker’s win if and only if the (q : 1) Cut Game is a CutBreaker’s
win. By Theorem 3.3 we have

∑
B∈F

2−|B|/q ≤
n2∑

i=100kq log2 q

|{S ⊂ V : e(S, S̄) = i}|
(

i

k − 1

)
2−(i−k+1)/q

≤
n2∑

i=100kq log2 q

cn
2i

100kq log2 q (ei/k)k2(k−i)/q

≤ c
n2∑

i=100kq log2 q

2
i

50q
− i

2q
+2k log(i/k)

= o(1),

where the third inequality holds since k ≥ log2 n and the last equality holds since
k = ω(1).

Hence, it follows by Theorem 1.7 that the (q : 1) game (E,F) is indeed a Cut-
Breaker’s win. 2

4 Concluding remarks and open problems

• In Theorem 1.3, we have proved that there exists a winning strategy for
Maker in the (1 : q) game (E,FP ) for every dense graph G = (V,E) on n
vertices which is robust with respect to P , and for every q ≤ cnα for some
constants c > 0 and α > 0. For the special case in which P = P (r) is the
property of being not-r-colorable, Theorem 1.4 provides a stronger result;
namely, the requirement that G is dense becomes redundant, and the upper
bound on q is improved to c(r) |E||V | . Both theorems are existential in nature.
It would be interesting to find explicit, efficient and deterministic winning
strategies for Maker in these games, under similar conditions.

• As mentioned in the introduction, Theorem 1.3 is essentially best possible
for some properties. One witness of this fact is the property PH of admitting
a copy of H, for some fixed graph H. Indeed, let G = (V,E) be a graph
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with n vertices and Θ(n2) edges, which is ε-robust with respect to PH . It is
well known that G contains γnv(H) copies of H, where γ > 0 is a constant.
Hence, it follows from the proof of Theorem 1.3 that Maker has a winning
strategy for the (1 : q) game (E,FPH

) for every q ≤ c1n
1/m2(H), where

c1 > 0 is an appropriate constant. Now assume that q ≥ c2n
1/m2(H) for

some sufficiently large constant c2. We claim that for such a q, Breaker has
a winning strategy for the (1 : q) game (E,FPH

). Clearly it suffices to prove
this for the (1 : q) game (E(Kn),FPH

). This, however, has been proved
in [4]. On the other hand, Theorem 1.4 shows that for some properties,
such as being not-r-colorable, the upper bound given in Theorem 1.3 is far
from being best possible. It would be interesting to obtain tighter bounds
for additional monotone properties.

• The bound on q given in Theorem 1.4 is not far from being tight, at least for
fixed values of r. Indeed, consider for example the graph G which consists
of n/d disjoint copies of Kd, where n >> d > r = 3. Clearly, one has to
delete a constant fraction of the edges of every d-clique of G in order to
obtain an r-colorable graph. Thus G is Ω(1)-robust with respect to being
not-r-colorable. However, if q ≥ 2d/(r − 2), then Breaker can make sure
that the maximum degree in Maker’s graph will be at most r − 1, and
thus Maker’s graph will be r-colorable. Breaker’s strategy is very simple:
whenever Maker claims an edge (u, v), Breaker responds by claiming q/2
arbitrary free edges that are incident with u and q/2 arbitrary free edges
that are incident with v. For large r, the maximum possible value of ε is only
Θ(1/r), as any graph can be made r-colorable by deleting at most an O(1/r)
fraction of its edges. Here, however, one can show that for q ≥ Cd/(r log r),
Breaker has a winning strategy for some graphs. Indeed, let d be an integer
satisfying d >> r log r. Let G = G(n, d/n) be a random graph on n vertices.
Delete from G all edges which are incident with vertices of degree higher
than 2d; denote the resulting graph by G′ = (V,E). One can easily show
that |V | = n, and almost surely |E| = Θ(d)n and G′ is Θ(1/r)-robust
with respect to being not-r-colorable. However, if q ≥ Cd/(r log r), for
an appropriate constant C > 0, then Breaker can make sure that Maker’s
graph will be triangle-free, and with maximum degree at most c̃r log r,
where c̃ > 0 is sufficiently small. It follows by Johansson’s Theorem [9] that
Maker’s graph will be r-colorable. Breaker plays as follows: in each move he
first claims every free edge that closes a triangle in Maker’s graph. Denote
the number of such edges by q1 and let q2 = q − q1. Since the triangles
in G(n, d/n) are almost surely edge-disjoint, we can assume in fact that
q1 = 1. Then, if the last edge claimed by Maker was (u, v), then Breaker
responds by claiming q2/2 arbitrary free edges that are incident with u and
q2/2 arbitrary free edges that are incident with v. This strategy is quite
similar to the one suggested by Chvátal and Erdős in [5] (see Theorem 5.2
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there).
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[6] D. Duffus, T.  Luczak and V. Rödl, Biased positional games on hyper-
graphs, Studia Scientarum Matematicarum Hung. 34 (1998), 141–149.

[7] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, Planarity, col-
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